Evaluate
\frac{30}{n^{3}}
Differentiate w.r.t. n
-\frac{90}{n^{4}}
Share
Copied to clipboard
\frac{\frac{2n^{3}\times 25^{3}}{n^{6}}\times 3^{6}}{15^{2}\times 15^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{2n^{3}\times 25^{3}}{n^{6}}\times 3^{6}}{15^{5}}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{\frac{2\times 25^{3}}{n^{3}}\times 3^{6}}{15^{5}}
Cancel out n^{3} in both numerator and denominator.
\frac{\frac{2\times 15625}{n^{3}}\times 3^{6}}{15^{5}}
Calculate 25 to the power of 3 and get 15625.
\frac{\frac{31250}{n^{3}}\times 3^{6}}{15^{5}}
Multiply 2 and 15625 to get 31250.
\frac{\frac{31250}{n^{3}}\times 729}{15^{5}}
Calculate 3 to the power of 6 and get 729.
\frac{\frac{31250\times 729}{n^{3}}}{15^{5}}
Express \frac{31250}{n^{3}}\times 729 as a single fraction.
\frac{\frac{31250\times 729}{n^{3}}}{759375}
Calculate 15 to the power of 5 and get 759375.
\frac{31250\times 729}{n^{3}\times 759375}
Express \frac{\frac{31250\times 729}{n^{3}}}{759375} as a single fraction.
\frac{3\times 10}{n^{3}}
Cancel out 243\times 3125 in both numerator and denominator.
\frac{30}{n^{3}}
Multiply 3 and 10 to get 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}