Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\left(a+b\right)^{3}-\left(a-b\right)^{3}\right)\times 2}{6b\left(-3\right)}
Divide \frac{\left(a+b\right)^{3}-\left(a-b\right)^{3}}{6b} by -\frac{3}{2} by multiplying \frac{\left(a+b\right)^{3}-\left(a-b\right)^{3}}{6b} by the reciprocal of -\frac{3}{2}.
\frac{\left(a+b\right)^{3}-\left(a-b\right)^{3}}{-3\times 3b}
Cancel out 2 in both numerator and denominator.
\frac{\left(a+b\right)^{3}-\left(a-b\right)^{3}}{-9b}
Multiply -3 and 3 to get -9.
\frac{2b\left(3a^{2}+b^{2}\right)}{-9b}
Factor the expressions that are not already factored.
\frac{2\left(3a^{2}+b^{2}\right)}{-9}
Cancel out b in both numerator and denominator.
\frac{6a^{2}+2b^{2}}{-9}
Expand the expression.
\frac{\left(\left(a+b\right)^{3}-\left(a-b\right)^{3}\right)\times 2}{6b\left(-3\right)}
Divide \frac{\left(a+b\right)^{3}-\left(a-b\right)^{3}}{6b} by -\frac{3}{2} by multiplying \frac{\left(a+b\right)^{3}-\left(a-b\right)^{3}}{6b} by the reciprocal of -\frac{3}{2}.
\frac{\left(a+b\right)^{3}-\left(a-b\right)^{3}}{-3\times 3b}
Cancel out 2 in both numerator and denominator.
\frac{\left(a+b\right)^{3}-\left(a-b\right)^{3}}{-9b}
Multiply -3 and 3 to get -9.
\frac{2b\left(3a^{2}+b^{2}\right)}{-9b}
Factor the expressions that are not already factored.
\frac{2\left(3a^{2}+b^{2}\right)}{-9}
Cancel out b in both numerator and denominator.
\frac{6a^{2}+2b^{2}}{-9}
Expand the expression.