Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{\left(9^{6}\right)^{5}}{\left(9^{8}\right)^{3}}\right)^{2}\times \frac{\left(\left(3^{5}\right)^{7}\right)^{2}\times \left(3^{6}\right)^{3}}{\left(\left(3^{19}\right)^{2}\right)^{2}}}{\left(\left(2+5^{2}\right)^{6}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\left(\frac{9^{30}}{\left(9^{8}\right)^{3}}\right)^{2}\times \frac{\left(\left(3^{5}\right)^{7}\right)^{2}\times \left(3^{6}\right)^{3}}{\left(\left(3^{19}\right)^{2}\right)^{2}}}{\left(\left(2+5^{2}\right)^{6}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 6 and 5 to get 30.
\frac{\left(\frac{9^{30}}{9^{24}}\right)^{2}\times \frac{\left(\left(3^{5}\right)^{7}\right)^{2}\times \left(3^{6}\right)^{3}}{\left(\left(3^{19}\right)^{2}\right)^{2}}}{\left(\left(2+5^{2}\right)^{6}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 8 and 3 to get 24.
\frac{\left(9^{6}\right)^{2}\times \frac{\left(\left(3^{5}\right)^{7}\right)^{2}\times \left(3^{6}\right)^{3}}{\left(\left(3^{19}\right)^{2}\right)^{2}}}{\left(\left(2+5^{2}\right)^{6}\right)^{2}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 24 from 30 to get 6.
\frac{9^{12}\times \frac{\left(\left(3^{5}\right)^{7}\right)^{2}\times \left(3^{6}\right)^{3}}{\left(\left(3^{19}\right)^{2}\right)^{2}}}{\left(\left(2+5^{2}\right)^{6}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 6 and 2 to get 12.
\frac{9^{12}\times \frac{\left(3^{35}\right)^{2}\times \left(3^{6}\right)^{3}}{\left(\left(3^{19}\right)^{2}\right)^{2}}}{\left(\left(2+5^{2}\right)^{6}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 5 and 7 to get 35.
\frac{9^{12}\times \frac{3^{70}\times \left(3^{6}\right)^{3}}{\left(\left(3^{19}\right)^{2}\right)^{2}}}{\left(\left(2+5^{2}\right)^{6}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 35 and 2 to get 70.
\frac{9^{12}\times \frac{3^{70}\times 3^{18}}{\left(\left(3^{19}\right)^{2}\right)^{2}}}{\left(\left(2+5^{2}\right)^{6}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 6 and 3 to get 18.
\frac{9^{12}\times \frac{3^{88}}{\left(\left(3^{19}\right)^{2}\right)^{2}}}{\left(\left(2+5^{2}\right)^{6}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 70 and 18 to get 88.
\frac{9^{12}\times \frac{3^{88}}{\left(3^{38}\right)^{2}}}{\left(\left(2+5^{2}\right)^{6}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 19 and 2 to get 38.
\frac{9^{12}\times \frac{3^{88}}{3^{76}}}{\left(\left(2+5^{2}\right)^{6}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 38 and 2 to get 76.
\frac{9^{12}\times 3^{12}}{\left(\left(2+5^{2}\right)^{6}\right)^{2}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 76 from 88 to get 12.
\frac{9^{12}\times 3^{12}}{\left(2+5^{2}\right)^{12}}
To raise a power to another power, multiply the exponents. Multiply 6 and 2 to get 12.
\frac{282429536481\times 3^{12}}{\left(2+5^{2}\right)^{12}}
Calculate 9 to the power of 12 and get 282429536481.
\frac{282429536481\times 531441}{\left(2+5^{2}\right)^{12}}
Calculate 3 to the power of 12 and get 531441.
\frac{150094635296999121}{\left(2+5^{2}\right)^{12}}
Multiply 282429536481 and 531441 to get 150094635296999121.
\frac{150094635296999121}{\left(2+25\right)^{12}}
Calculate 5 to the power of 2 and get 25.
\frac{150094635296999121}{27^{12}}
Add 2 and 25 to get 27.
\frac{150094635296999121}{150094635296999121}
Calculate 27 to the power of 12 and get 150094635296999121.
1
Divide 150094635296999121 by 150094635296999121 to get 1.