Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(2-x^{3}\right)^{2}\left(2+x^{3}\right)^{2}-x^{6}-16}{\frac{3}{4}x^{4}\times \frac{2}{3}x^{2}}
Express \frac{\frac{\left(2-x^{3}\right)^{2}\left(2+x^{3}\right)^{2}-x^{6}-16}{\frac{3}{4}x^{4}}}{\frac{2}{3}x^{2}} as a single fraction.
\frac{\left(2-x^{3}\right)^{2}\left(2+x^{3}\right)^{2}-x^{6}-16}{\frac{3}{4}x^{6}\times \frac{2}{3}}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
\frac{\left(2-x^{3}\right)^{2}\left(2+x^{3}\right)^{2}-x^{6}-16}{\frac{1}{2}x^{6}}
Multiply \frac{3}{4} and \frac{2}{3} to get \frac{1}{2}.
\frac{\left(x^{3}-3\right)\left(x^{3}+3\right)x^{6}}{\frac{1}{2}x^{6}}
Factor the expressions that are not already factored.
\frac{\left(x^{3}-3\right)\left(x^{3}+3\right)}{\frac{1}{2}}
Cancel out x^{6} in both numerator and denominator.
\frac{x^{6}-9}{\frac{1}{2}}
Expand the expression.
\left(x^{6}-9\right)\times 2
Divide x^{6}-9 by \frac{1}{2} by multiplying x^{6}-9 by the reciprocal of \frac{1}{2}.
2x^{6}-18
Use the distributive property to multiply x^{6}-9 by 2.
\frac{\left(2-x^{3}\right)^{2}\left(2+x^{3}\right)^{2}-x^{6}-16}{\frac{3}{4}x^{4}\times \frac{2}{3}x^{2}}
Express \frac{\frac{\left(2-x^{3}\right)^{2}\left(2+x^{3}\right)^{2}-x^{6}-16}{\frac{3}{4}x^{4}}}{\frac{2}{3}x^{2}} as a single fraction.
\frac{\left(2-x^{3}\right)^{2}\left(2+x^{3}\right)^{2}-x^{6}-16}{\frac{3}{4}x^{6}\times \frac{2}{3}}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
\frac{\left(2-x^{3}\right)^{2}\left(2+x^{3}\right)^{2}-x^{6}-16}{\frac{1}{2}x^{6}}
Multiply \frac{3}{4} and \frac{2}{3} to get \frac{1}{2}.
\frac{\left(x^{3}-3\right)\left(x^{3}+3\right)x^{6}}{\frac{1}{2}x^{6}}
Factor the expressions that are not already factored.
\frac{\left(x^{3}-3\right)\left(x^{3}+3\right)}{\frac{1}{2}}
Cancel out x^{6} in both numerator and denominator.
\frac{x^{6}-9}{\frac{1}{2}}
Expand the expression.
\left(x^{6}-9\right)\times 2
Divide x^{6}-9 by \frac{1}{2} by multiplying x^{6}-9 by the reciprocal of \frac{1}{2}.
2x^{6}-18
Use the distributive property to multiply x^{6}-9 by 2.