Evaluate
2\left(x^{6}-9\right)
Expand
2x^{6}-18
Graph
Share
Copied to clipboard
\frac{\left(2-x^{3}\right)^{2}\left(2+x^{3}\right)^{2}-x^{6}-16}{\frac{3}{4}x^{4}\times \frac{2}{3}x^{2}}
Express \frac{\frac{\left(2-x^{3}\right)^{2}\left(2+x^{3}\right)^{2}-x^{6}-16}{\frac{3}{4}x^{4}}}{\frac{2}{3}x^{2}} as a single fraction.
\frac{\left(2-x^{3}\right)^{2}\left(2+x^{3}\right)^{2}-x^{6}-16}{\frac{3}{4}x^{6}\times \frac{2}{3}}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
\frac{\left(2-x^{3}\right)^{2}\left(2+x^{3}\right)^{2}-x^{6}-16}{\frac{1}{2}x^{6}}
Multiply \frac{3}{4} and \frac{2}{3} to get \frac{1}{2}.
\frac{\left(x^{3}-3\right)\left(x^{3}+3\right)x^{6}}{\frac{1}{2}x^{6}}
Factor the expressions that are not already factored.
\frac{\left(x^{3}-3\right)\left(x^{3}+3\right)}{\frac{1}{2}}
Cancel out x^{6} in both numerator and denominator.
\frac{x^{6}-9}{\frac{1}{2}}
Expand the expression.
\left(x^{6}-9\right)\times 2
Divide x^{6}-9 by \frac{1}{2} by multiplying x^{6}-9 by the reciprocal of \frac{1}{2}.
2x^{6}-18
Use the distributive property to multiply x^{6}-9 by 2.
\frac{\left(2-x^{3}\right)^{2}\left(2+x^{3}\right)^{2}-x^{6}-16}{\frac{3}{4}x^{4}\times \frac{2}{3}x^{2}}
Express \frac{\frac{\left(2-x^{3}\right)^{2}\left(2+x^{3}\right)^{2}-x^{6}-16}{\frac{3}{4}x^{4}}}{\frac{2}{3}x^{2}} as a single fraction.
\frac{\left(2-x^{3}\right)^{2}\left(2+x^{3}\right)^{2}-x^{6}-16}{\frac{3}{4}x^{6}\times \frac{2}{3}}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
\frac{\left(2-x^{3}\right)^{2}\left(2+x^{3}\right)^{2}-x^{6}-16}{\frac{1}{2}x^{6}}
Multiply \frac{3}{4} and \frac{2}{3} to get \frac{1}{2}.
\frac{\left(x^{3}-3\right)\left(x^{3}+3\right)x^{6}}{\frac{1}{2}x^{6}}
Factor the expressions that are not already factored.
\frac{\left(x^{3}-3\right)\left(x^{3}+3\right)}{\frac{1}{2}}
Cancel out x^{6} in both numerator and denominator.
\frac{x^{6}-9}{\frac{1}{2}}
Expand the expression.
\left(x^{6}-9\right)\times 2
Divide x^{6}-9 by \frac{1}{2} by multiplying x^{6}-9 by the reciprocal of \frac{1}{2}.
2x^{6}-18
Use the distributive property to multiply x^{6}-9 by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}