Evaluate
2
Factor
2
Share
Copied to clipboard
\frac{\left(\left(\left(2-\frac{36}{5^{2}}\right)\times 15-2^{3}\right)^{2}\left(\frac{2+\frac{3}{2}+\frac{\frac{2}{3}}{\frac{2}{15}}}{\frac{1}{10}}-10\right)-3^{2}\right)^{2}}{\frac{9}{2}}
Calculate 6 to the power of 2 and get 36.
\frac{\left(\left(\left(2-\frac{36}{25}\right)\times 15-2^{3}\right)^{2}\left(\frac{2+\frac{3}{2}+\frac{\frac{2}{3}}{\frac{2}{15}}}{\frac{1}{10}}-10\right)-3^{2}\right)^{2}}{\frac{9}{2}}
Calculate 5 to the power of 2 and get 25.
\frac{\left(\left(\frac{14}{25}\times 15-2^{3}\right)^{2}\left(\frac{2+\frac{3}{2}+\frac{\frac{2}{3}}{\frac{2}{15}}}{\frac{1}{10}}-10\right)-3^{2}\right)^{2}}{\frac{9}{2}}
Subtract \frac{36}{25} from 2 to get \frac{14}{25}.
\frac{\left(\left(\frac{42}{5}-2^{3}\right)^{2}\left(\frac{2+\frac{3}{2}+\frac{\frac{2}{3}}{\frac{2}{15}}}{\frac{1}{10}}-10\right)-3^{2}\right)^{2}}{\frac{9}{2}}
Multiply \frac{14}{25} and 15 to get \frac{42}{5}.
\frac{\left(\left(\frac{42}{5}-8\right)^{2}\left(\frac{2+\frac{3}{2}+\frac{\frac{2}{3}}{\frac{2}{15}}}{\frac{1}{10}}-10\right)-3^{2}\right)^{2}}{\frac{9}{2}}
Calculate 2 to the power of 3 and get 8.
\frac{\left(\left(\frac{2}{5}\right)^{2}\left(\frac{2+\frac{3}{2}+\frac{\frac{2}{3}}{\frac{2}{15}}}{\frac{1}{10}}-10\right)-3^{2}\right)^{2}}{\frac{9}{2}}
Subtract 8 from \frac{42}{5} to get \frac{2}{5}.
\frac{\left(\frac{4}{25}\left(\frac{2+\frac{3}{2}+\frac{\frac{2}{3}}{\frac{2}{15}}}{\frac{1}{10}}-10\right)-3^{2}\right)^{2}}{\frac{9}{2}}
Calculate \frac{2}{5} to the power of 2 and get \frac{4}{25}.
\frac{\left(\frac{4}{25}\left(\frac{\frac{7}{2}+\frac{\frac{2}{3}}{\frac{2}{15}}}{\frac{1}{10}}-10\right)-3^{2}\right)^{2}}{\frac{9}{2}}
Add 2 and \frac{3}{2} to get \frac{7}{2}.
\frac{\left(\frac{4}{25}\left(\frac{\frac{7}{2}+\frac{2}{3}\times \frac{15}{2}}{\frac{1}{10}}-10\right)-3^{2}\right)^{2}}{\frac{9}{2}}
Divide \frac{2}{3} by \frac{2}{15} by multiplying \frac{2}{3} by the reciprocal of \frac{2}{15}.
\frac{\left(\frac{4}{25}\left(\frac{\frac{7}{2}+5}{\frac{1}{10}}-10\right)-3^{2}\right)^{2}}{\frac{9}{2}}
Multiply \frac{2}{3} and \frac{15}{2} to get 5.
\frac{\left(\frac{4}{25}\left(\frac{\frac{17}{2}}{\frac{1}{10}}-10\right)-3^{2}\right)^{2}}{\frac{9}{2}}
Add \frac{7}{2} and 5 to get \frac{17}{2}.
\frac{\left(\frac{4}{25}\left(\frac{17}{2}\times 10-10\right)-3^{2}\right)^{2}}{\frac{9}{2}}
Divide \frac{17}{2} by \frac{1}{10} by multiplying \frac{17}{2} by the reciprocal of \frac{1}{10}.
\frac{\left(\frac{4}{25}\left(85-10\right)-3^{2}\right)^{2}}{\frac{9}{2}}
Multiply \frac{17}{2} and 10 to get 85.
\frac{\left(\frac{4}{25}\times 75-3^{2}\right)^{2}}{\frac{9}{2}}
Subtract 10 from 85 to get 75.
\frac{\left(12-3^{2}\right)^{2}}{\frac{9}{2}}
Multiply \frac{4}{25} and 75 to get 12.
\frac{\left(12-9\right)^{2}}{\frac{9}{2}}
Calculate 3 to the power of 2 and get 9.
\frac{3^{2}}{\frac{9}{2}}
Subtract 9 from 12 to get 3.
\frac{9}{\frac{9}{2}}
Calculate 3 to the power of 2 and get 9.
9\times \frac{2}{9}
Divide 9 by \frac{9}{2} by multiplying 9 by the reciprocal of \frac{9}{2}.
2
Multiply 9 and \frac{2}{9} to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}