Evaluate
24
Factor
2^{3}\times 3
Share
Copied to clipboard
\left(\left(\frac{2^{3}+\frac{6^{5}}{6^{3}}-3\times 7+4^{0}}{2^{3}}\right)^{2}-\frac{8^{3}-20^{2}}{4^{2}}\right)\times 2^{2}+5\times 3+1^{9}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 5 from 8 to get 3.
\left(\left(\frac{2^{3}+6^{2}-3\times 7+4^{0}}{2^{3}}\right)^{2}-\frac{8^{3}-20^{2}}{4^{2}}\right)\times 2^{2}+5\times 3+1^{9}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 3 from 5 to get 2.
\left(\left(\frac{8+6^{2}-3\times 7+4^{0}}{2^{3}}\right)^{2}-\frac{8^{3}-20^{2}}{4^{2}}\right)\times 2^{2}+5\times 3+1^{9}
Calculate 2 to the power of 3 and get 8.
\left(\left(\frac{8+36-3\times 7+4^{0}}{2^{3}}\right)^{2}-\frac{8^{3}-20^{2}}{4^{2}}\right)\times 2^{2}+5\times 3+1^{9}
Calculate 6 to the power of 2 and get 36.
\left(\left(\frac{44-3\times 7+4^{0}}{2^{3}}\right)^{2}-\frac{8^{3}-20^{2}}{4^{2}}\right)\times 2^{2}+5\times 3+1^{9}
Add 8 and 36 to get 44.
\left(\left(\frac{44-21+4^{0}}{2^{3}}\right)^{2}-\frac{8^{3}-20^{2}}{4^{2}}\right)\times 2^{2}+5\times 3+1^{9}
Multiply 3 and 7 to get 21.
\left(\left(\frac{23+4^{0}}{2^{3}}\right)^{2}-\frac{8^{3}-20^{2}}{4^{2}}\right)\times 2^{2}+5\times 3+1^{9}
Subtract 21 from 44 to get 23.
\left(\left(\frac{23+1}{2^{3}}\right)^{2}-\frac{8^{3}-20^{2}}{4^{2}}\right)\times 2^{2}+5\times 3+1^{9}
Calculate 4 to the power of 0 and get 1.
\left(\left(\frac{24}{2^{3}}\right)^{2}-\frac{8^{3}-20^{2}}{4^{2}}\right)\times 2^{2}+5\times 3+1^{9}
Add 23 and 1 to get 24.
\left(\left(\frac{24}{8}\right)^{2}-\frac{8^{3}-20^{2}}{4^{2}}\right)\times 2^{2}+5\times 3+1^{9}
Calculate 2 to the power of 3 and get 8.
\left(3^{2}-\frac{8^{3}-20^{2}}{4^{2}}\right)\times 2^{2}+5\times 3+1^{9}
Divide 24 by 8 to get 3.
\left(9-\frac{8^{3}-20^{2}}{4^{2}}\right)\times 2^{2}+5\times 3+1^{9}
Calculate 3 to the power of 2 and get 9.
\left(9-\frac{512-20^{2}}{4^{2}}\right)\times 2^{2}+5\times 3+1^{9}
Calculate 8 to the power of 3 and get 512.
\left(9-\frac{512-400}{4^{2}}\right)\times 2^{2}+5\times 3+1^{9}
Calculate 20 to the power of 2 and get 400.
\left(9-\frac{112}{4^{2}}\right)\times 2^{2}+5\times 3+1^{9}
Subtract 400 from 512 to get 112.
\left(9-\frac{112}{16}\right)\times 2^{2}+5\times 3+1^{9}
Calculate 4 to the power of 2 and get 16.
\left(9-7\right)\times 2^{2}+5\times 3+1^{9}
Divide 112 by 16 to get 7.
2\times 2^{2}+5\times 3+1^{9}
Subtract 7 from 9 to get 2.
2\times 4+5\times 3+1^{9}
Calculate 2 to the power of 2 and get 4.
8+5\times 3+1^{9}
Multiply 2 and 4 to get 8.
8+15+1^{9}
Multiply 5 and 3 to get 15.
23+1^{9}
Add 8 and 15 to get 23.
23+1
Calculate 1 to the power of 9 and get 1.
24
Add 23 and 1 to get 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}