Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2^{25}}{4^{7}}x-13^{2}=\left(2x+2^{0}\right)^{2}+\frac{\left(2^{7}\right)^{5}}{4^{15}}
To raise a power to another power, multiply the exponents. Multiply 5 and 5 to get 25.
\frac{2^{25}}{4^{7}}x-13^{2}=\left(2x+2^{0}\right)^{2}+\frac{2^{35}}{4^{15}}
To raise a power to another power, multiply the exponents. Multiply 7 and 5 to get 35.
\frac{33554432}{4^{7}}x-13^{2}=\left(2x+2^{0}\right)^{2}+\frac{2^{35}}{4^{15}}
Calculate 2 to the power of 25 and get 33554432.
\frac{33554432}{16384}x-13^{2}=\left(2x+2^{0}\right)^{2}+\frac{2^{35}}{4^{15}}
Calculate 4 to the power of 7 and get 16384.
2048x-13^{2}=\left(2x+2^{0}\right)^{2}+\frac{2^{35}}{4^{15}}
Divide 33554432 by 16384 to get 2048.
2048x-169=\left(2x+2^{0}\right)^{2}+\frac{2^{35}}{4^{15}}
Calculate 13 to the power of 2 and get 169.
2048x-169=\left(2x+1\right)^{2}+\frac{2^{35}}{4^{15}}
Calculate 2 to the power of 0 and get 1.
2048x-169=4x^{2}+4x+1+\frac{2^{35}}{4^{15}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
2048x-169=4x^{2}+4x+1+\frac{34359738368}{4^{15}}
Calculate 2 to the power of 35 and get 34359738368.
2048x-169=4x^{2}+4x+1+\frac{34359738368}{1073741824}
Calculate 4 to the power of 15 and get 1073741824.
2048x-169=4x^{2}+4x+1+32
Divide 34359738368 by 1073741824 to get 32.
2048x-169=4x^{2}+4x+33
Add 1 and 32 to get 33.
2048x-169-4x^{2}=4x+33
Subtract 4x^{2} from both sides.
2048x-169-4x^{2}-4x=33
Subtract 4x from both sides.
2044x-169-4x^{2}=33
Combine 2048x and -4x to get 2044x.
2044x-169-4x^{2}-33=0
Subtract 33 from both sides.
2044x-202-4x^{2}=0
Subtract 33 from -169 to get -202.
-4x^{2}+2044x-202=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2044±\sqrt{2044^{2}-4\left(-4\right)\left(-202\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 2044 for b, and -202 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2044±\sqrt{4177936-4\left(-4\right)\left(-202\right)}}{2\left(-4\right)}
Square 2044.
x=\frac{-2044±\sqrt{4177936+16\left(-202\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-2044±\sqrt{4177936-3232}}{2\left(-4\right)}
Multiply 16 times -202.
x=\frac{-2044±\sqrt{4174704}}{2\left(-4\right)}
Add 4177936 to -3232.
x=\frac{-2044±12\sqrt{28991}}{2\left(-4\right)}
Take the square root of 4174704.
x=\frac{-2044±12\sqrt{28991}}{-8}
Multiply 2 times -4.
x=\frac{12\sqrt{28991}-2044}{-8}
Now solve the equation x=\frac{-2044±12\sqrt{28991}}{-8} when ± is plus. Add -2044 to 12\sqrt{28991}.
x=\frac{511-3\sqrt{28991}}{2}
Divide -2044+12\sqrt{28991} by -8.
x=\frac{-12\sqrt{28991}-2044}{-8}
Now solve the equation x=\frac{-2044±12\sqrt{28991}}{-8} when ± is minus. Subtract 12\sqrt{28991} from -2044.
x=\frac{3\sqrt{28991}+511}{2}
Divide -2044-12\sqrt{28991} by -8.
x=\frac{511-3\sqrt{28991}}{2} x=\frac{3\sqrt{28991}+511}{2}
The equation is now solved.
\frac{2^{25}}{4^{7}}x-13^{2}=\left(2x+2^{0}\right)^{2}+\frac{\left(2^{7}\right)^{5}}{4^{15}}
To raise a power to another power, multiply the exponents. Multiply 5 and 5 to get 25.
\frac{2^{25}}{4^{7}}x-13^{2}=\left(2x+2^{0}\right)^{2}+\frac{2^{35}}{4^{15}}
To raise a power to another power, multiply the exponents. Multiply 7 and 5 to get 35.
\frac{33554432}{4^{7}}x-13^{2}=\left(2x+2^{0}\right)^{2}+\frac{2^{35}}{4^{15}}
Calculate 2 to the power of 25 and get 33554432.
\frac{33554432}{16384}x-13^{2}=\left(2x+2^{0}\right)^{2}+\frac{2^{35}}{4^{15}}
Calculate 4 to the power of 7 and get 16384.
2048x-13^{2}=\left(2x+2^{0}\right)^{2}+\frac{2^{35}}{4^{15}}
Divide 33554432 by 16384 to get 2048.
2048x-169=\left(2x+2^{0}\right)^{2}+\frac{2^{35}}{4^{15}}
Calculate 13 to the power of 2 and get 169.
2048x-169=\left(2x+1\right)^{2}+\frac{2^{35}}{4^{15}}
Calculate 2 to the power of 0 and get 1.
2048x-169=4x^{2}+4x+1+\frac{2^{35}}{4^{15}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
2048x-169=4x^{2}+4x+1+\frac{34359738368}{4^{15}}
Calculate 2 to the power of 35 and get 34359738368.
2048x-169=4x^{2}+4x+1+\frac{34359738368}{1073741824}
Calculate 4 to the power of 15 and get 1073741824.
2048x-169=4x^{2}+4x+1+32
Divide 34359738368 by 1073741824 to get 32.
2048x-169=4x^{2}+4x+33
Add 1 and 32 to get 33.
2048x-169-4x^{2}=4x+33
Subtract 4x^{2} from both sides.
2048x-169-4x^{2}-4x=33
Subtract 4x from both sides.
2044x-169-4x^{2}=33
Combine 2048x and -4x to get 2044x.
2044x-4x^{2}=33+169
Add 169 to both sides.
2044x-4x^{2}=202
Add 33 and 169 to get 202.
-4x^{2}+2044x=202
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+2044x}{-4}=\frac{202}{-4}
Divide both sides by -4.
x^{2}+\frac{2044}{-4}x=\frac{202}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-511x=\frac{202}{-4}
Divide 2044 by -4.
x^{2}-511x=-\frac{101}{2}
Reduce the fraction \frac{202}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-511x+\left(-\frac{511}{2}\right)^{2}=-\frac{101}{2}+\left(-\frac{511}{2}\right)^{2}
Divide -511, the coefficient of the x term, by 2 to get -\frac{511}{2}. Then add the square of -\frac{511}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-511x+\frac{261121}{4}=-\frac{101}{2}+\frac{261121}{4}
Square -\frac{511}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-511x+\frac{261121}{4}=\frac{260919}{4}
Add -\frac{101}{2} to \frac{261121}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{511}{2}\right)^{2}=\frac{260919}{4}
Factor x^{2}-511x+\frac{261121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{511}{2}\right)^{2}}=\sqrt{\frac{260919}{4}}
Take the square root of both sides of the equation.
x-\frac{511}{2}=\frac{3\sqrt{28991}}{2} x-\frac{511}{2}=-\frac{3\sqrt{28991}}{2}
Simplify.
x=\frac{3\sqrt{28991}+511}{2} x=\frac{511-3\sqrt{28991}}{2}
Add \frac{511}{2} to both sides of the equation.