Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-\frac{1}{5}\right)^{2}x^{2}y^{2}\left(-2\right)xy+\left(\frac{1}{2}xy-\frac{1}{5}xy\right)\left(\frac{1}{3}x^{2}y^{2}+\frac{1}{5}x^{2}y^{2}\right)}{\left(-\frac{1}{5}xy\right)^{3}}
Expand \left(-\frac{1}{5}xy\right)^{2}.
\frac{\frac{1}{25}x^{2}y^{2}\left(-2\right)xy+\left(\frac{1}{2}xy-\frac{1}{5}xy\right)\left(\frac{1}{3}x^{2}y^{2}+\frac{1}{5}x^{2}y^{2}\right)}{\left(-\frac{1}{5}xy\right)^{3}}
Calculate -\frac{1}{5} to the power of 2 and get \frac{1}{25}.
\frac{-\frac{2}{25}x^{2}y^{2}xy+\left(\frac{1}{2}xy-\frac{1}{5}xy\right)\left(\frac{1}{3}x^{2}y^{2}+\frac{1}{5}x^{2}y^{2}\right)}{\left(-\frac{1}{5}xy\right)^{3}}
Multiply \frac{1}{25} and -2 to get -\frac{2}{25}.
\frac{-\frac{2}{25}x^{3}y^{2}y+\left(\frac{1}{2}xy-\frac{1}{5}xy\right)\left(\frac{1}{3}x^{2}y^{2}+\frac{1}{5}x^{2}y^{2}\right)}{\left(-\frac{1}{5}xy\right)^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{-\frac{2}{25}x^{3}y^{3}+\left(\frac{1}{2}xy-\frac{1}{5}xy\right)\left(\frac{1}{3}x^{2}y^{2}+\frac{1}{5}x^{2}y^{2}\right)}{\left(-\frac{1}{5}xy\right)^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{-\frac{2}{25}x^{3}y^{3}+\frac{3}{10}xy\left(\frac{1}{3}x^{2}y^{2}+\frac{1}{5}x^{2}y^{2}\right)}{\left(-\frac{1}{5}xy\right)^{3}}
Combine \frac{1}{2}xy and -\frac{1}{5}xy to get \frac{3}{10}xy.
\frac{-\frac{2}{25}x^{3}y^{3}+\frac{3}{10}xy\times \frac{8}{15}x^{2}y^{2}}{\left(-\frac{1}{5}xy\right)^{3}}
Combine \frac{1}{3}x^{2}y^{2} and \frac{1}{5}x^{2}y^{2} to get \frac{8}{15}x^{2}y^{2}.
\frac{-\frac{2}{25}x^{3}y^{3}+\frac{4}{25}xyx^{2}y^{2}}{\left(-\frac{1}{5}xy\right)^{3}}
Multiply \frac{3}{10} and \frac{8}{15} to get \frac{4}{25}.
\frac{-\frac{2}{25}x^{3}y^{3}+\frac{4}{25}x^{3}yy^{2}}{\left(-\frac{1}{5}xy\right)^{3}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{-\frac{2}{25}x^{3}y^{3}+\frac{4}{25}x^{3}y^{3}}{\left(-\frac{1}{5}xy\right)^{3}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\frac{2}{25}x^{3}y^{3}}{\left(-\frac{1}{5}xy\right)^{3}}
Combine -\frac{2}{25}x^{3}y^{3} and \frac{4}{25}x^{3}y^{3} to get \frac{2}{25}x^{3}y^{3}.
\frac{\frac{2}{25}x^{3}y^{3}}{\left(-\frac{1}{5}\right)^{3}x^{3}y^{3}}
Expand \left(-\frac{1}{5}xy\right)^{3}.
\frac{\frac{2}{25}x^{3}y^{3}}{-\frac{1}{125}x^{3}y^{3}}
Calculate -\frac{1}{5} to the power of 3 and get -\frac{1}{125}.
\frac{\frac{2}{25}}{-\frac{1}{125}}
Cancel out x^{3}y^{3} in both numerator and denominator.
\frac{2}{25}\left(-125\right)
Divide \frac{2}{25} by -\frac{1}{125} by multiplying \frac{2}{25} by the reciprocal of -\frac{1}{125}.
-10
Multiply \frac{2}{25} and -125 to get -10.