Evaluate
\frac{17}{12}\approx 1.416666667
Factor
\frac{17}{2 ^ {2} \cdot 3} = 1\frac{5}{12} = 1.4166666666666667
Share
Copied to clipboard
\frac{\frac{\left(\left(\frac{3}{4}\right)^{5}\right)^{2}}{\left(\frac{3}{4}\right)^{8}}+\frac{3}{4}}{\frac{7}{4}}+\frac{2}{3}
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
\frac{\frac{\left(\frac{3}{4}\right)^{10}}{\left(\frac{3}{4}\right)^{8}}+\frac{3}{4}}{\frac{7}{4}}+\frac{2}{3}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\frac{\left(\frac{3}{4}\right)^{2}+\frac{3}{4}}{\frac{7}{4}}+\frac{2}{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 8 from 10 to get 2.
\frac{\frac{9}{16}+\frac{3}{4}}{\frac{7}{4}}+\frac{2}{3}
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
\frac{\frac{21}{16}}{\frac{7}{4}}+\frac{2}{3}
Add \frac{9}{16} and \frac{3}{4} to get \frac{21}{16}.
\frac{21}{16}\times \frac{4}{7}+\frac{2}{3}
Divide \frac{21}{16} by \frac{7}{4} by multiplying \frac{21}{16} by the reciprocal of \frac{7}{4}.
\frac{3}{4}+\frac{2}{3}
Multiply \frac{21}{16} and \frac{4}{7} to get \frac{3}{4}.
\frac{17}{12}
Add \frac{3}{4} and \frac{2}{3} to get \frac{17}{12}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}