Evaluate
18
Factor
2\times 3^{2}
Share
Copied to clipboard
\left(\left(\frac{\frac{9}{2}}{\frac{35}{20}-\frac{8}{20}}+\frac{3}{7}\left(\frac{6}{5}+\frac{2}{3}\right)\right)\times \frac{3}{5}+\frac{13}{25}\right)\times 6
Least common multiple of 4 and 5 is 20. Convert \frac{7}{4} and \frac{2}{5} to fractions with denominator 20.
\left(\left(\frac{\frac{9}{2}}{\frac{35-8}{20}}+\frac{3}{7}\left(\frac{6}{5}+\frac{2}{3}\right)\right)\times \frac{3}{5}+\frac{13}{25}\right)\times 6
Since \frac{35}{20} and \frac{8}{20} have the same denominator, subtract them by subtracting their numerators.
\left(\left(\frac{\frac{9}{2}}{\frac{27}{20}}+\frac{3}{7}\left(\frac{6}{5}+\frac{2}{3}\right)\right)\times \frac{3}{5}+\frac{13}{25}\right)\times 6
Subtract 8 from 35 to get 27.
\left(\left(\frac{9}{2}\times \frac{20}{27}+\frac{3}{7}\left(\frac{6}{5}+\frac{2}{3}\right)\right)\times \frac{3}{5}+\frac{13}{25}\right)\times 6
Divide \frac{9}{2} by \frac{27}{20} by multiplying \frac{9}{2} by the reciprocal of \frac{27}{20}.
\left(\left(\frac{9\times 20}{2\times 27}+\frac{3}{7}\left(\frac{6}{5}+\frac{2}{3}\right)\right)\times \frac{3}{5}+\frac{13}{25}\right)\times 6
Multiply \frac{9}{2} times \frac{20}{27} by multiplying numerator times numerator and denominator times denominator.
\left(\left(\frac{180}{54}+\frac{3}{7}\left(\frac{6}{5}+\frac{2}{3}\right)\right)\times \frac{3}{5}+\frac{13}{25}\right)\times 6
Do the multiplications in the fraction \frac{9\times 20}{2\times 27}.
\left(\left(\frac{10}{3}+\frac{3}{7}\left(\frac{6}{5}+\frac{2}{3}\right)\right)\times \frac{3}{5}+\frac{13}{25}\right)\times 6
Reduce the fraction \frac{180}{54} to lowest terms by extracting and canceling out 18.
\left(\left(\frac{10}{3}+\frac{3}{7}\left(\frac{18}{15}+\frac{10}{15}\right)\right)\times \frac{3}{5}+\frac{13}{25}\right)\times 6
Least common multiple of 5 and 3 is 15. Convert \frac{6}{5} and \frac{2}{3} to fractions with denominator 15.
\left(\left(\frac{10}{3}+\frac{3}{7}\times \frac{18+10}{15}\right)\times \frac{3}{5}+\frac{13}{25}\right)\times 6
Since \frac{18}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
\left(\left(\frac{10}{3}+\frac{3}{7}\times \frac{28}{15}\right)\times \frac{3}{5}+\frac{13}{25}\right)\times 6
Add 18 and 10 to get 28.
\left(\left(\frac{10}{3}+\frac{3\times 28}{7\times 15}\right)\times \frac{3}{5}+\frac{13}{25}\right)\times 6
Multiply \frac{3}{7} times \frac{28}{15} by multiplying numerator times numerator and denominator times denominator.
\left(\left(\frac{10}{3}+\frac{84}{105}\right)\times \frac{3}{5}+\frac{13}{25}\right)\times 6
Do the multiplications in the fraction \frac{3\times 28}{7\times 15}.
\left(\left(\frac{10}{3}+\frac{4}{5}\right)\times \frac{3}{5}+\frac{13}{25}\right)\times 6
Reduce the fraction \frac{84}{105} to lowest terms by extracting and canceling out 21.
\left(\left(\frac{50}{15}+\frac{12}{15}\right)\times \frac{3}{5}+\frac{13}{25}\right)\times 6
Least common multiple of 3 and 5 is 15. Convert \frac{10}{3} and \frac{4}{5} to fractions with denominator 15.
\left(\frac{50+12}{15}\times \frac{3}{5}+\frac{13}{25}\right)\times 6
Since \frac{50}{15} and \frac{12}{15} have the same denominator, add them by adding their numerators.
\left(\frac{62}{15}\times \frac{3}{5}+\frac{13}{25}\right)\times 6
Add 50 and 12 to get 62.
\left(\frac{62\times 3}{15\times 5}+\frac{13}{25}\right)\times 6
Multiply \frac{62}{15} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{186}{75}+\frac{13}{25}\right)\times 6
Do the multiplications in the fraction \frac{62\times 3}{15\times 5}.
\left(\frac{62}{25}+\frac{13}{25}\right)\times 6
Reduce the fraction \frac{186}{75} to lowest terms by extracting and canceling out 3.
\frac{62+13}{25}\times 6
Since \frac{62}{25} and \frac{13}{25} have the same denominator, add them by adding their numerators.
\frac{75}{25}\times 6
Add 62 and 13 to get 75.
3\times 6
Divide 75 by 25 to get 3.
18
Multiply 3 and 6 to get 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}