Evaluate
-\frac{87}{50}=-1.74
Factor
-\frac{87}{50} = -1\frac{37}{50} = -1.74
Share
Copied to clipboard
\left(\frac{5}{3}+\frac{2}{5}-\frac{\frac{4}{3}}{\frac{1}{2}}\right)\left(-\frac{3}{5}+\frac{7}{2}\right)
The opposite of -\frac{2}{5} is \frac{2}{5}.
\left(\frac{25}{15}+\frac{6}{15}-\frac{\frac{4}{3}}{\frac{1}{2}}\right)\left(-\frac{3}{5}+\frac{7}{2}\right)
Least common multiple of 3 and 5 is 15. Convert \frac{5}{3} and \frac{2}{5} to fractions with denominator 15.
\left(\frac{25+6}{15}-\frac{\frac{4}{3}}{\frac{1}{2}}\right)\left(-\frac{3}{5}+\frac{7}{2}\right)
Since \frac{25}{15} and \frac{6}{15} have the same denominator, add them by adding their numerators.
\left(\frac{31}{15}-\frac{\frac{4}{3}}{\frac{1}{2}}\right)\left(-\frac{3}{5}+\frac{7}{2}\right)
Add 25 and 6 to get 31.
\left(\frac{31}{15}-\frac{4}{3}\times 2\right)\left(-\frac{3}{5}+\frac{7}{2}\right)
Divide \frac{4}{3} by \frac{1}{2} by multiplying \frac{4}{3} by the reciprocal of \frac{1}{2}.
\left(\frac{31}{15}-\frac{4\times 2}{3}\right)\left(-\frac{3}{5}+\frac{7}{2}\right)
Express \frac{4}{3}\times 2 as a single fraction.
\left(\frac{31}{15}-\frac{8}{3}\right)\left(-\frac{3}{5}+\frac{7}{2}\right)
Multiply 4 and 2 to get 8.
\left(\frac{31}{15}-\frac{40}{15}\right)\left(-\frac{3}{5}+\frac{7}{2}\right)
Least common multiple of 15 and 3 is 15. Convert \frac{31}{15} and \frac{8}{3} to fractions with denominator 15.
\frac{31-40}{15}\left(-\frac{3}{5}+\frac{7}{2}\right)
Since \frac{31}{15} and \frac{40}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{-9}{15}\left(-\frac{3}{5}+\frac{7}{2}\right)
Subtract 40 from 31 to get -9.
-\frac{3}{5}\left(-\frac{3}{5}+\frac{7}{2}\right)
Reduce the fraction \frac{-9}{15} to lowest terms by extracting and canceling out 3.
-\frac{3}{5}\left(-\frac{6}{10}+\frac{35}{10}\right)
Least common multiple of 5 and 2 is 10. Convert -\frac{3}{5} and \frac{7}{2} to fractions with denominator 10.
-\frac{3}{5}\times \frac{-6+35}{10}
Since -\frac{6}{10} and \frac{35}{10} have the same denominator, add them by adding their numerators.
-\frac{3}{5}\times \frac{29}{10}
Add -6 and 35 to get 29.
\frac{-3\times 29}{5\times 10}
Multiply -\frac{3}{5} times \frac{29}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{-87}{50}
Do the multiplications in the fraction \frac{-3\times 29}{5\times 10}.
-\frac{87}{50}
Fraction \frac{-87}{50} can be rewritten as -\frac{87}{50} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}