Solve for p (complex solution)
\left\{\begin{matrix}p=\frac{x^{2}+2bx+y^{2}+b^{2}+4p_{m}}{2\left(x+y+b\right)}\text{, }&x\neq -y-b\\p\in \mathrm{C}\text{, }&p_{m}=-\frac{y^{2}}{2}\text{ and }x=-\left(y+b\right)\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=\frac{x^{2}+2bx+y^{2}+b^{2}+4p_{m}}{2\left(x+y+b\right)}\text{, }&x\neq -y-b\\p\in \mathrm{R}\text{, }&p_{m}=-\frac{y^{2}}{2}\text{ and }x=-\left(y+b\right)\end{matrix}\right.
Solve for b (complex solution)
b=-i\sqrt{y^{2}-2py-p^{2}+4p_{m}}+p-x
b=i\sqrt{y^{2}-2py-p^{2}+4p_{m}}+p-x
Solve for b
b=-\left(\sqrt{-y^{2}+2py+p^{2}-4p_{m}}+x-p\right)
b=\sqrt{-y^{2}+2py+p^{2}-4p_{m}}+p-x\text{, }p_{m}\leq \frac{py}{2}+\frac{p^{2}}{4}-\frac{y^{2}}{4}
Share
Copied to clipboard
\left(x-p+b\right)^{2}+\left(y-p\right)^{2}=2p^{2}-4p_{m}
To find the opposite of p-b, find the opposite of each term.
x^{2}+2bx-2px-2bp+b^{2}+p^{2}+\left(y-p\right)^{2}=2p^{2}-4p_{m}
Square x-p+b.
x^{2}+2bx-2px-2bp+b^{2}+p^{2}+y^{2}-2yp+p^{2}=2p^{2}-4p_{m}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-p\right)^{2}.
x^{2}+2bx-2px-2bp+b^{2}+2p^{2}+y^{2}-2yp=2p^{2}-4p_{m}
Combine p^{2} and p^{2} to get 2p^{2}.
x^{2}+2bx-2px-2bp+b^{2}+2p^{2}+y^{2}-2yp-2p^{2}=-4p_{m}
Subtract 2p^{2} from both sides.
x^{2}+2bx-2px-2bp+b^{2}+y^{2}-2yp=-4p_{m}
Combine 2p^{2} and -2p^{2} to get 0.
2bx-2px-2bp+b^{2}+y^{2}-2yp=-4p_{m}-x^{2}
Subtract x^{2} from both sides.
-2px-2bp+b^{2}+y^{2}-2yp=-4p_{m}-x^{2}-2bx
Subtract 2bx from both sides.
-2px-2bp+y^{2}-2yp=-4p_{m}-x^{2}-2bx-b^{2}
Subtract b^{2} from both sides.
-2px-2bp-2yp=-4p_{m}-x^{2}-2bx-b^{2}-y^{2}
Subtract y^{2} from both sides.
\left(-2x-2b-2y\right)p=-4p_{m}-x^{2}-2bx-b^{2}-y^{2}
Combine all terms containing p.
\left(-2x-2y-2b\right)p=-x^{2}-2bx-y^{2}-b^{2}-4p_{m}
The equation is in standard form.
\frac{\left(-2x-2y-2b\right)p}{-2x-2y-2b}=\frac{-\left(x+b\right)^{2}-y^{2}-4p_{m}}{-2x-2y-2b}
Divide both sides by -2x-2b-2y.
p=\frac{-\left(x+b\right)^{2}-y^{2}-4p_{m}}{-2x-2y-2b}
Dividing by -2x-2b-2y undoes the multiplication by -2x-2b-2y.
p=\frac{x^{2}+2bx+y^{2}+b^{2}+4p_{m}}{2\left(x+y+b\right)}
Divide -4p_{m}-y^{2}-\left(x+b\right)^{2} by -2x-2b-2y.
\left(x-p+b\right)^{2}+\left(y-p\right)^{2}=2p^{2}-4p_{m}
To find the opposite of p-b, find the opposite of each term.
x^{2}+2bx-2px-2bp+b^{2}+p^{2}+\left(y-p\right)^{2}=2p^{2}-4p_{m}
Square x-p+b.
x^{2}+2bx-2px-2bp+b^{2}+p^{2}+y^{2}-2yp+p^{2}=2p^{2}-4p_{m}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-p\right)^{2}.
x^{2}+2bx-2px-2bp+b^{2}+2p^{2}+y^{2}-2yp=2p^{2}-4p_{m}
Combine p^{2} and p^{2} to get 2p^{2}.
x^{2}+2bx-2px-2bp+b^{2}+2p^{2}+y^{2}-2yp-2p^{2}=-4p_{m}
Subtract 2p^{2} from both sides.
x^{2}+2bx-2px-2bp+b^{2}+y^{2}-2yp=-4p_{m}
Combine 2p^{2} and -2p^{2} to get 0.
2bx-2px-2bp+b^{2}+y^{2}-2yp=-4p_{m}-x^{2}
Subtract x^{2} from both sides.
-2px-2bp+b^{2}+y^{2}-2yp=-4p_{m}-x^{2}-2bx
Subtract 2bx from both sides.
-2px-2bp+y^{2}-2yp=-4p_{m}-x^{2}-2bx-b^{2}
Subtract b^{2} from both sides.
-2px-2bp-2yp=-4p_{m}-x^{2}-2bx-b^{2}-y^{2}
Subtract y^{2} from both sides.
\left(-2x-2b-2y\right)p=-4p_{m}-x^{2}-2bx-b^{2}-y^{2}
Combine all terms containing p.
\left(-2x-2y-2b\right)p=-x^{2}-2bx-y^{2}-b^{2}-4p_{m}
The equation is in standard form.
\frac{\left(-2x-2y-2b\right)p}{-2x-2y-2b}=\frac{-\left(x+b\right)^{2}-y^{2}-4p_{m}}{-2x-2y-2b}
Divide both sides by -2x-2b-2y.
p=\frac{-\left(x+b\right)^{2}-y^{2}-4p_{m}}{-2x-2y-2b}
Dividing by -2x-2b-2y undoes the multiplication by -2x-2b-2y.
p=\frac{x^{2}+2bx+y^{2}+b^{2}+4p_{m}}{2\left(x+y+b\right)}
Divide -4p_{m}-y^{2}-\left(x+b\right)^{2} by -2x-2b-2y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}