Skip to main content
Solve for p (complex solution)
Tick mark Image
Solve for p
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

\left(x-p+b\right)^{2}+\left(y-p\right)^{2}=2p^{2}-4p_{m}
To find the opposite of p-b, find the opposite of each term.
x^{2}+2bx-2px-2bp+b^{2}+p^{2}+\left(y-p\right)^{2}=2p^{2}-4p_{m}
Square x-p+b.
x^{2}+2bx-2px-2bp+b^{2}+p^{2}+y^{2}-2yp+p^{2}=2p^{2}-4p_{m}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-p\right)^{2}.
x^{2}+2bx-2px-2bp+b^{2}+2p^{2}+y^{2}-2yp=2p^{2}-4p_{m}
Combine p^{2} and p^{2} to get 2p^{2}.
x^{2}+2bx-2px-2bp+b^{2}+2p^{2}+y^{2}-2yp-2p^{2}=-4p_{m}
Subtract 2p^{2} from both sides.
x^{2}+2bx-2px-2bp+b^{2}+y^{2}-2yp=-4p_{m}
Combine 2p^{2} and -2p^{2} to get 0.
2bx-2px-2bp+b^{2}+y^{2}-2yp=-4p_{m}-x^{2}
Subtract x^{2} from both sides.
-2px-2bp+b^{2}+y^{2}-2yp=-4p_{m}-x^{2}-2bx
Subtract 2bx from both sides.
-2px-2bp+y^{2}-2yp=-4p_{m}-x^{2}-2bx-b^{2}
Subtract b^{2} from both sides.
-2px-2bp-2yp=-4p_{m}-x^{2}-2bx-b^{2}-y^{2}
Subtract y^{2} from both sides.
\left(-2x-2b-2y\right)p=-4p_{m}-x^{2}-2bx-b^{2}-y^{2}
Combine all terms containing p.
\left(-2x-2y-2b\right)p=-x^{2}-2bx-y^{2}-b^{2}-4p_{m}
The equation is in standard form.
\frac{\left(-2x-2y-2b\right)p}{-2x-2y-2b}=\frac{-\left(x+b\right)^{2}-y^{2}-4p_{m}}{-2x-2y-2b}
Divide both sides by -2x-2b-2y.
p=\frac{-\left(x+b\right)^{2}-y^{2}-4p_{m}}{-2x-2y-2b}
Dividing by -2x-2b-2y undoes the multiplication by -2x-2b-2y.
p=\frac{x^{2}+2bx+y^{2}+b^{2}+4p_{m}}{2\left(x+y+b\right)}
Divide -4p_{m}-y^{2}-\left(x+b\right)^{2} by -2x-2b-2y.
\left(x-p+b\right)^{2}+\left(y-p\right)^{2}=2p^{2}-4p_{m}
To find the opposite of p-b, find the opposite of each term.
x^{2}+2bx-2px-2bp+b^{2}+p^{2}+\left(y-p\right)^{2}=2p^{2}-4p_{m}
Square x-p+b.
x^{2}+2bx-2px-2bp+b^{2}+p^{2}+y^{2}-2yp+p^{2}=2p^{2}-4p_{m}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-p\right)^{2}.
x^{2}+2bx-2px-2bp+b^{2}+2p^{2}+y^{2}-2yp=2p^{2}-4p_{m}
Combine p^{2} and p^{2} to get 2p^{2}.
x^{2}+2bx-2px-2bp+b^{2}+2p^{2}+y^{2}-2yp-2p^{2}=-4p_{m}
Subtract 2p^{2} from both sides.
x^{2}+2bx-2px-2bp+b^{2}+y^{2}-2yp=-4p_{m}
Combine 2p^{2} and -2p^{2} to get 0.
2bx-2px-2bp+b^{2}+y^{2}-2yp=-4p_{m}-x^{2}
Subtract x^{2} from both sides.
-2px-2bp+b^{2}+y^{2}-2yp=-4p_{m}-x^{2}-2bx
Subtract 2bx from both sides.
-2px-2bp+y^{2}-2yp=-4p_{m}-x^{2}-2bx-b^{2}
Subtract b^{2} from both sides.
-2px-2bp-2yp=-4p_{m}-x^{2}-2bx-b^{2}-y^{2}
Subtract y^{2} from both sides.
\left(-2x-2b-2y\right)p=-4p_{m}-x^{2}-2bx-b^{2}-y^{2}
Combine all terms containing p.
\left(-2x-2y-2b\right)p=-x^{2}-2bx-y^{2}-b^{2}-4p_{m}
The equation is in standard form.
\frac{\left(-2x-2y-2b\right)p}{-2x-2y-2b}=\frac{-\left(x+b\right)^{2}-y^{2}-4p_{m}}{-2x-2y-2b}
Divide both sides by -2x-2b-2y.
p=\frac{-\left(x+b\right)^{2}-y^{2}-4p_{m}}{-2x-2y-2b}
Dividing by -2x-2b-2y undoes the multiplication by -2x-2b-2y.
p=\frac{x^{2}+2bx+y^{2}+b^{2}+4p_{m}}{2\left(x+y+b\right)}
Divide -4p_{m}-y^{2}-\left(x+b\right)^{2} by -2x-2b-2y.