Solve for x
x = \frac{900}{23} = 39\frac{3}{23} \approx 39.130434783
Graph
Share
Copied to clipboard
\left(x-0.15x-30\right)\times 120=\frac{1}{2}\times 20x
To find the opposite of 0.15x+30, find the opposite of each term.
\left(0.85x-30\right)\times 120=\frac{1}{2}\times 20x
Combine x and -0.15x to get 0.85x.
102x-3600=\frac{1}{2}\times 20x
Use the distributive property to multiply 0.85x-30 by 120.
102x-3600=\frac{20}{2}x
Multiply \frac{1}{2} and 20 to get \frac{20}{2}.
102x-3600=10x
Divide 20 by 2 to get 10.
102x-3600-10x=0
Subtract 10x from both sides.
92x-3600=0
Combine 102x and -10x to get 92x.
92x=3600
Add 3600 to both sides. Anything plus zero gives itself.
x=\frac{3600}{92}
Divide both sides by 92.
x=\frac{900}{23}
Reduce the fraction \frac{3600}{92} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}