Solve for x
x=\frac{1}{3}\approx 0.333333333
x=-\frac{7}{8}=-0.875
Graph
Share
Copied to clipboard
\left(x+\frac{7}{8}\right)\left(x-\frac{1}{3}\right)=0
The opposite of -\frac{7}{8} is \frac{7}{8}.
x^{2}+\frac{13}{24}x-\frac{7}{24}=0
Use the distributive property to multiply x+\frac{7}{8} by x-\frac{1}{3} and combine like terms.
x=\frac{-\frac{13}{24}±\sqrt{\left(\frac{13}{24}\right)^{2}-4\left(-\frac{7}{24}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{13}{24} for b, and -\frac{7}{24} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{13}{24}±\sqrt{\frac{169}{576}-4\left(-\frac{7}{24}\right)}}{2}
Square \frac{13}{24} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{13}{24}±\sqrt{\frac{169}{576}+\frac{7}{6}}}{2}
Multiply -4 times -\frac{7}{24}.
x=\frac{-\frac{13}{24}±\sqrt{\frac{841}{576}}}{2}
Add \frac{169}{576} to \frac{7}{6} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{13}{24}±\frac{29}{24}}{2}
Take the square root of \frac{841}{576}.
x=\frac{\frac{2}{3}}{2}
Now solve the equation x=\frac{-\frac{13}{24}±\frac{29}{24}}{2} when ± is plus. Add -\frac{13}{24} to \frac{29}{24} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{3}
Divide \frac{2}{3} by 2.
x=-\frac{\frac{7}{4}}{2}
Now solve the equation x=\frac{-\frac{13}{24}±\frac{29}{24}}{2} when ± is minus. Subtract \frac{29}{24} from -\frac{13}{24} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{7}{8}
Divide -\frac{7}{4} by 2.
x=\frac{1}{3} x=-\frac{7}{8}
The equation is now solved.
\left(x+\frac{7}{8}\right)\left(x-\frac{1}{3}\right)=0
The opposite of -\frac{7}{8} is \frac{7}{8}.
x^{2}+\frac{13}{24}x-\frac{7}{24}=0
Use the distributive property to multiply x+\frac{7}{8} by x-\frac{1}{3} and combine like terms.
x^{2}+\frac{13}{24}x=\frac{7}{24}
Add \frac{7}{24} to both sides. Anything plus zero gives itself.
x^{2}+\frac{13}{24}x+\left(\frac{13}{48}\right)^{2}=\frac{7}{24}+\left(\frac{13}{48}\right)^{2}
Divide \frac{13}{24}, the coefficient of the x term, by 2 to get \frac{13}{48}. Then add the square of \frac{13}{48} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{24}x+\frac{169}{2304}=\frac{7}{24}+\frac{169}{2304}
Square \frac{13}{48} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{13}{24}x+\frac{169}{2304}=\frac{841}{2304}
Add \frac{7}{24} to \frac{169}{2304} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{13}{48}\right)^{2}=\frac{841}{2304}
Factor x^{2}+\frac{13}{24}x+\frac{169}{2304}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{48}\right)^{2}}=\sqrt{\frac{841}{2304}}
Take the square root of both sides of the equation.
x+\frac{13}{48}=\frac{29}{48} x+\frac{13}{48}=-\frac{29}{48}
Simplify.
x=\frac{1}{3} x=-\frac{7}{8}
Subtract \frac{13}{48} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}