Evaluate
\frac{xy}{12}-\frac{4z}{3}+y+3x+\frac{1}{2}
Expand
\frac{xy}{12}-\frac{4z}{3}+y+3x+\frac{1}{2}
Share
Copied to clipboard
x+y-\frac{4}{3}z-\left(-1\right)+\frac{3}{4}xy+\frac{1}{4}-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
To find the opposite of \frac{4}{3}z-1, find the opposite of each term.
x+y-\frac{4}{3}z+1+\frac{3}{4}xy+\frac{1}{4}-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
The opposite of -1 is 1.
x+y-\frac{4}{3}z+\frac{4}{4}+\frac{3}{4}xy+\frac{1}{4}-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
Convert 1 to fraction \frac{4}{4}.
x+y-\frac{4}{3}z+\frac{4+1}{4}+\frac{3}{4}xy-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
Since \frac{4}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
x+y-\frac{4}{3}z+\frac{5}{4}+\frac{3}{4}xy-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
Add 4 and 1 to get 5.
x+y-\frac{4}{3}z+\frac{5}{4}+\frac{3}{4}xy+2x-\left(\frac{2}{3}xy+\frac{3}{4}\right)
The opposite of -2x is 2x.
3x+y-\frac{4}{3}z+\frac{5}{4}+\frac{3}{4}xy-\left(\frac{2}{3}xy+\frac{3}{4}\right)
Combine x and 2x to get 3x.
3x+y-\frac{4}{3}z+\frac{5}{4}+\frac{3}{4}xy-\frac{2}{3}xy-\frac{3}{4}
To find the opposite of \frac{2}{3}xy+\frac{3}{4}, find the opposite of each term.
3x+y-\frac{4}{3}z+\frac{5}{4}+\frac{1}{12}xy-\frac{3}{4}
Combine \frac{3}{4}xy and -\frac{2}{3}xy to get \frac{1}{12}xy.
3x+y-\frac{4}{3}z+\frac{5-3}{4}+\frac{1}{12}xy
Since \frac{5}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
3x+y-\frac{4}{3}z+\frac{2}{4}+\frac{1}{12}xy
Subtract 3 from 5 to get 2.
3x+y-\frac{4}{3}z+\frac{1}{2}+\frac{1}{12}xy
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x+y-\frac{4}{3}z-\left(-1\right)+\frac{3}{4}xy+\frac{1}{4}-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
To find the opposite of \frac{4}{3}z-1, find the opposite of each term.
x+y-\frac{4}{3}z+1+\frac{3}{4}xy+\frac{1}{4}-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
The opposite of -1 is 1.
x+y-\frac{4}{3}z+\frac{4}{4}+\frac{3}{4}xy+\frac{1}{4}-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
Convert 1 to fraction \frac{4}{4}.
x+y-\frac{4}{3}z+\frac{4+1}{4}+\frac{3}{4}xy-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
Since \frac{4}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
x+y-\frac{4}{3}z+\frac{5}{4}+\frac{3}{4}xy-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
Add 4 and 1 to get 5.
x+y-\frac{4}{3}z+\frac{5}{4}+\frac{3}{4}xy+2x-\left(\frac{2}{3}xy+\frac{3}{4}\right)
The opposite of -2x is 2x.
3x+y-\frac{4}{3}z+\frac{5}{4}+\frac{3}{4}xy-\left(\frac{2}{3}xy+\frac{3}{4}\right)
Combine x and 2x to get 3x.
3x+y-\frac{4}{3}z+\frac{5}{4}+\frac{3}{4}xy-\frac{2}{3}xy-\frac{3}{4}
To find the opposite of \frac{2}{3}xy+\frac{3}{4}, find the opposite of each term.
3x+y-\frac{4}{3}z+\frac{5}{4}+\frac{1}{12}xy-\frac{3}{4}
Combine \frac{3}{4}xy and -\frac{2}{3}xy to get \frac{1}{12}xy.
3x+y-\frac{4}{3}z+\frac{5-3}{4}+\frac{1}{12}xy
Since \frac{5}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
3x+y-\frac{4}{3}z+\frac{2}{4}+\frac{1}{12}xy
Subtract 3 from 5 to get 2.
3x+y-\frac{4}{3}z+\frac{1}{2}+\frac{1}{12}xy
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}