Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

x+y-\frac{4}{3}z-\left(-1\right)+\frac{3}{4}xy+\frac{1}{4}-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
To find the opposite of \frac{4}{3}z-1, find the opposite of each term.
x+y-\frac{4}{3}z+1+\frac{3}{4}xy+\frac{1}{4}-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
The opposite of -1 is 1.
x+y-\frac{4}{3}z+\frac{4}{4}+\frac{3}{4}xy+\frac{1}{4}-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
Convert 1 to fraction \frac{4}{4}.
x+y-\frac{4}{3}z+\frac{4+1}{4}+\frac{3}{4}xy-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
Since \frac{4}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
x+y-\frac{4}{3}z+\frac{5}{4}+\frac{3}{4}xy-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
Add 4 and 1 to get 5.
x+y-\frac{4}{3}z+\frac{5}{4}+\frac{3}{4}xy+2x-\left(\frac{2}{3}xy+\frac{3}{4}\right)
The opposite of -2x is 2x.
3x+y-\frac{4}{3}z+\frac{5}{4}+\frac{3}{4}xy-\left(\frac{2}{3}xy+\frac{3}{4}\right)
Combine x and 2x to get 3x.
3x+y-\frac{4}{3}z+\frac{5}{4}+\frac{3}{4}xy-\frac{2}{3}xy-\frac{3}{4}
To find the opposite of \frac{2}{3}xy+\frac{3}{4}, find the opposite of each term.
3x+y-\frac{4}{3}z+\frac{5}{4}+\frac{1}{12}xy-\frac{3}{4}
Combine \frac{3}{4}xy and -\frac{2}{3}xy to get \frac{1}{12}xy.
3x+y-\frac{4}{3}z+\frac{5-3}{4}+\frac{1}{12}xy
Since \frac{5}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
3x+y-\frac{4}{3}z+\frac{2}{4}+\frac{1}{12}xy
Subtract 3 from 5 to get 2.
3x+y-\frac{4}{3}z+\frac{1}{2}+\frac{1}{12}xy
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x+y-\frac{4}{3}z-\left(-1\right)+\frac{3}{4}xy+\frac{1}{4}-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
To find the opposite of \frac{4}{3}z-1, find the opposite of each term.
x+y-\frac{4}{3}z+1+\frac{3}{4}xy+\frac{1}{4}-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
The opposite of -1 is 1.
x+y-\frac{4}{3}z+\frac{4}{4}+\frac{3}{4}xy+\frac{1}{4}-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
Convert 1 to fraction \frac{4}{4}.
x+y-\frac{4}{3}z+\frac{4+1}{4}+\frac{3}{4}xy-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
Since \frac{4}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
x+y-\frac{4}{3}z+\frac{5}{4}+\frac{3}{4}xy-\left(-2x\right)-\left(\frac{2}{3}xy+\frac{3}{4}\right)
Add 4 and 1 to get 5.
x+y-\frac{4}{3}z+\frac{5}{4}+\frac{3}{4}xy+2x-\left(\frac{2}{3}xy+\frac{3}{4}\right)
The opposite of -2x is 2x.
3x+y-\frac{4}{3}z+\frac{5}{4}+\frac{3}{4}xy-\left(\frac{2}{3}xy+\frac{3}{4}\right)
Combine x and 2x to get 3x.
3x+y-\frac{4}{3}z+\frac{5}{4}+\frac{3}{4}xy-\frac{2}{3}xy-\frac{3}{4}
To find the opposite of \frac{2}{3}xy+\frac{3}{4}, find the opposite of each term.
3x+y-\frac{4}{3}z+\frac{5}{4}+\frac{1}{12}xy-\frac{3}{4}
Combine \frac{3}{4}xy and -\frac{2}{3}xy to get \frac{1}{12}xy.
3x+y-\frac{4}{3}z+\frac{5-3}{4}+\frac{1}{12}xy
Since \frac{5}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
3x+y-\frac{4}{3}z+\frac{2}{4}+\frac{1}{12}xy
Subtract 3 from 5 to get 2.
3x+y-\frac{4}{3}z+\frac{1}{2}+\frac{1}{12}xy
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.