Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a^{3}\left(-a^{4}\right)\right)^{3}}{a^{6}}\left(a^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\left(a^{3}\left(-a^{4}\right)\right)^{3}}{a^{6}}a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\left(a^{3}\right)^{3}\left(-a^{4}\right)^{3}}{a^{6}}a^{6}
Expand \left(a^{3}\left(-a^{4}\right)\right)^{3}.
\frac{a^{9}\left(-a^{4}\right)^{3}}{a^{6}}a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
a^{3}\left(-a^{4}\right)^{3}a^{6}
Cancel out a^{6} in both numerator and denominator.
a^{9}\left(-a^{4}\right)^{3}
To multiply powers of the same base, add their exponents. Add 3 and 6 to get 9.
a^{9}\left(-1\right)^{3}\left(a^{4}\right)^{3}
Expand \left(-a^{4}\right)^{3}.
a^{9}\left(-1\right)^{3}a^{12}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
a^{9}\left(-1\right)a^{12}
Calculate -1 to the power of 3 and get -1.
a^{21}\left(-1\right)
To multiply powers of the same base, add their exponents. Add 9 and 12 to get 21.
\frac{\left(a^{3}\left(-a^{4}\right)\right)^{3}}{a^{6}}\left(a^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\left(a^{3}\left(-a^{4}\right)\right)^{3}}{a^{6}}a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\left(a^{3}\right)^{3}\left(-a^{4}\right)^{3}}{a^{6}}a^{6}
Expand \left(a^{3}\left(-a^{4}\right)\right)^{3}.
\frac{a^{9}\left(-a^{4}\right)^{3}}{a^{6}}a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
a^{3}\left(-a^{4}\right)^{3}a^{6}
Cancel out a^{6} in both numerator and denominator.
a^{9}\left(-a^{4}\right)^{3}
To multiply powers of the same base, add their exponents. Add 3 and 6 to get 9.
a^{9}\left(-1\right)^{3}\left(a^{4}\right)^{3}
Expand \left(-a^{4}\right)^{3}.
a^{9}\left(-1\right)^{3}a^{12}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
a^{9}\left(-1\right)a^{12}
Calculate -1 to the power of 3 and get -1.
a^{21}\left(-1\right)
To multiply powers of the same base, add their exponents. Add 9 and 12 to get 21.