Evaluate
-a^{21}
Expand
-a^{21}
Share
Copied to clipboard
\frac{\left(a^{3}\left(-a^{4}\right)\right)^{3}}{a^{6}}\left(a^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\left(a^{3}\left(-a^{4}\right)\right)^{3}}{a^{6}}a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\left(a^{3}\right)^{3}\left(-a^{4}\right)^{3}}{a^{6}}a^{6}
Expand \left(a^{3}\left(-a^{4}\right)\right)^{3}.
\frac{a^{9}\left(-a^{4}\right)^{3}}{a^{6}}a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
a^{3}\left(-a^{4}\right)^{3}a^{6}
Cancel out a^{6} in both numerator and denominator.
a^{9}\left(-a^{4}\right)^{3}
To multiply powers of the same base, add their exponents. Add 3 and 6 to get 9.
a^{9}\left(-1\right)^{3}\left(a^{4}\right)^{3}
Expand \left(-a^{4}\right)^{3}.
a^{9}\left(-1\right)^{3}a^{12}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
a^{9}\left(-1\right)a^{12}
Calculate -1 to the power of 3 and get -1.
a^{21}\left(-1\right)
To multiply powers of the same base, add their exponents. Add 9 and 12 to get 21.
\frac{\left(a^{3}\left(-a^{4}\right)\right)^{3}}{a^{6}}\left(a^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\left(a^{3}\left(-a^{4}\right)\right)^{3}}{a^{6}}a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\left(a^{3}\right)^{3}\left(-a^{4}\right)^{3}}{a^{6}}a^{6}
Expand \left(a^{3}\left(-a^{4}\right)\right)^{3}.
\frac{a^{9}\left(-a^{4}\right)^{3}}{a^{6}}a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
a^{3}\left(-a^{4}\right)^{3}a^{6}
Cancel out a^{6} in both numerator and denominator.
a^{9}\left(-a^{4}\right)^{3}
To multiply powers of the same base, add their exponents. Add 3 and 6 to get 9.
a^{9}\left(-1\right)^{3}\left(a^{4}\right)^{3}
Expand \left(-a^{4}\right)^{3}.
a^{9}\left(-1\right)^{3}a^{12}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
a^{9}\left(-1\right)a^{12}
Calculate -1 to the power of 3 and get -1.
a^{21}\left(-1\right)
To multiply powers of the same base, add their exponents. Add 9 and 12 to get 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}