Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(K\left(7-K\right)\right)^{2}-4\times 2K^{3}\left(-3\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(7K-K^{2}\right)^{2}-4\times 2K^{3}\left(-3\right)
Use the distributive property to multiply K by 7-K.
49K^{2}-14KK^{2}+\left(K^{2}\right)^{2}-4\times 2K^{3}\left(-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7K-K^{2}\right)^{2}.
49K^{2}-14K^{3}+\left(K^{2}\right)^{2}-4\times 2K^{3}\left(-3\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
49K^{2}-14K^{3}+K^{4}-4\times 2K^{3}\left(-3\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
49K^{2}-14K^{3}+K^{4}-8K^{3}\left(-3\right)
Multiply 4 and 2 to get 8.
49K^{2}-14K^{3}+K^{4}-\left(-24K^{3}\right)
Multiply 8 and -3 to get -24.
49K^{2}-14K^{3}+K^{4}+24K^{3}
The opposite of -24K^{3} is 24K^{3}.
49K^{2}+10K^{3}+K^{4}
Combine -14K^{3} and 24K^{3} to get 10K^{3}.
\left(K\left(7-K\right)\right)^{2}-4\times 2K^{3}\left(-3\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(7K-K^{2}\right)^{2}-4\times 2K^{3}\left(-3\right)
Use the distributive property to multiply K by 7-K.
49K^{2}-14KK^{2}+\left(K^{2}\right)^{2}-4\times 2K^{3}\left(-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7K-K^{2}\right)^{2}.
49K^{2}-14K^{3}+\left(K^{2}\right)^{2}-4\times 2K^{3}\left(-3\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
49K^{2}-14K^{3}+K^{4}-4\times 2K^{3}\left(-3\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
49K^{2}-14K^{3}+K^{4}-8K^{3}\left(-3\right)
Multiply 4 and 2 to get 8.
49K^{2}-14K^{3}+K^{4}-\left(-24K^{3}\right)
Multiply 8 and -3 to get -24.
49K^{2}-14K^{3}+K^{4}+24K^{3}
The opposite of -24K^{3} is 24K^{3}.
49K^{2}+10K^{3}+K^{4}
Combine -14K^{3} and 24K^{3} to get 10K^{3}.