Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\frac{9-\left(8-\left(\frac{4}{12}+\frac{3}{12}\right)\times 6\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{1}{4} to fractions with denominator 12.
\frac{9-\left(8-\frac{4+3}{12}\times 6\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Since \frac{4}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{9-\left(8-\frac{7}{12}\times 6\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Add 4 and 3 to get 7.
\frac{9-\left(8-\frac{7\times 6}{12}\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Express \frac{7}{12}\times 6 as a single fraction.
\frac{9-\left(8-\frac{42}{12}\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Multiply 7 and 6 to get 42.
\frac{9-\left(8-\frac{7}{2}\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Reduce the fraction \frac{42}{12} to lowest terms by extracting and canceling out 6.
\frac{9-\left(\frac{16}{2}-\frac{7}{2}\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Convert 8 to fraction \frac{16}{2}.
\frac{9-\frac{16-7}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Since \frac{16}{2} and \frac{7}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{9-\frac{9}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Subtract 7 from 16 to get 9.
\frac{\frac{18}{2}-\frac{9}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Convert 9 to fraction \frac{18}{2}.
\frac{\frac{18-9}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Since \frac{18}{2} and \frac{9}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{9}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Subtract 9 from 18 to get 9.
\frac{\frac{9}{2}}{8-\left(\frac{2}{6}+\frac{3}{6}\right)\times 6}
Least common multiple of 3 and 2 is 6. Convert \frac{1}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{\frac{9}{2}}{8-\frac{2+3}{6}\times 6}
Since \frac{2}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{9}{2}}{8-\frac{5}{6}\times 6}
Add 2 and 3 to get 5.
\frac{\frac{9}{2}}{8-5}
Cancel out 6 and 6.
\frac{\frac{9}{2}}{3}
Subtract 5 from 8 to get 3.
\frac{9}{2\times 3}
Express \frac{\frac{9}{2}}{3} as a single fraction.
\frac{9}{6}
Multiply 2 and 3 to get 6.
\frac{3}{2}
Reduce the fraction \frac{9}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}