Evaluate
\frac{997}{124}\approx 8.040322581
Factor
\frac{997}{31 \cdot 2 ^ {2}} = 8\frac{5}{124} = 8.040322580645162
Share
Copied to clipboard
\left(8-\frac{0.5}{-6.2}\right)\times 0.5+4
Subtract 3 from 3.5 to get 0.5.
\left(8-\frac{5}{-62}\right)\times 0.5+4
Expand \frac{0.5}{-6.2} by multiplying both numerator and the denominator by 10.
\left(8-\left(-\frac{5}{62}\right)\right)\times 0.5+4
Fraction \frac{5}{-62} can be rewritten as -\frac{5}{62} by extracting the negative sign.
\left(8+\frac{5}{62}\right)\times 0.5+4
The opposite of -\frac{5}{62} is \frac{5}{62}.
\left(\frac{496}{62}+\frac{5}{62}\right)\times 0.5+4
Convert 8 to fraction \frac{496}{62}.
\frac{496+5}{62}\times 0.5+4
Since \frac{496}{62} and \frac{5}{62} have the same denominator, add them by adding their numerators.
\frac{501}{62}\times 0.5+4
Add 496 and 5 to get 501.
\frac{501}{62}\times \frac{1}{2}+4
Convert decimal number 0.5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{501\times 1}{62\times 2}+4
Multiply \frac{501}{62} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{501}{124}+4
Do the multiplications in the fraction \frac{501\times 1}{62\times 2}.
\frac{501}{124}+\frac{496}{124}
Convert 4 to fraction \frac{496}{124}.
\frac{501+496}{124}
Since \frac{501}{124} and \frac{496}{124} have the same denominator, add them by adding their numerators.
\frac{997}{124}
Add 501 and 496 to get 997.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}