Evaluate
\frac{x^{2}\left(x^{4}+6x^{2}+137\right)}{8}
Expand
\frac{x^{6}}{8}+\frac{3x^{4}}{4}+\frac{137x^{2}}{8}
Share
Copied to clipboard
\frac{\left(x^{2}x+\frac{9x^{2}yz}{3xyz}\right)^{2}}{8}+\left(4x\right)^{2}
Cancel out 7 and 7.
\frac{\left(x^{3}+\frac{9x^{2}yz}{3xyz}\right)^{2}}{8}+\left(4x\right)^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\left(x^{3}+3x\right)^{2}}{8}+\left(4x\right)^{2}
Cancel out 3xyz in both numerator and denominator.
\frac{\left(x^{3}+3x\right)^{2}}{8}+4^{2}x^{2}
Expand \left(4x\right)^{2}.
\frac{\left(x^{3}+3x\right)^{2}}{8}+16x^{2}
Calculate 4 to the power of 2 and get 16.
\frac{\left(x^{3}+3x\right)^{2}}{8}+\frac{8\times 16x^{2}}{8}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16x^{2} times \frac{8}{8}.
\frac{\left(x^{3}+3x\right)^{2}+8\times 16x^{2}}{8}
Since \frac{\left(x^{3}+3x\right)^{2}}{8} and \frac{8\times 16x^{2}}{8} have the same denominator, add them by adding their numerators.
\frac{x^{6}+6x^{4}+9x^{2}+128x^{2}}{8}
Do the multiplications in \left(x^{3}+3x\right)^{2}+8\times 16x^{2}.
\frac{x^{6}+6x^{4}+137x^{2}}{8}
Combine like terms in x^{6}+6x^{4}+9x^{2}+128x^{2}.
\frac{\left(x^{2}x+\frac{9x^{2}yz}{3xyz}\right)^{2}}{8}+\left(4x\right)^{2}
Cancel out 7 and 7.
\frac{\left(x^{3}+\frac{9x^{2}yz}{3xyz}\right)^{2}}{8}+\left(4x\right)^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\left(x^{3}+3x\right)^{2}}{8}+\left(4x\right)^{2}
Cancel out 3xyz in both numerator and denominator.
\frac{\left(x^{3}+3x\right)^{2}}{8}+4^{2}x^{2}
Expand \left(4x\right)^{2}.
\frac{\left(x^{3}+3x\right)^{2}}{8}+16x^{2}
Calculate 4 to the power of 2 and get 16.
\frac{\left(x^{3}+3x\right)^{2}}{8}+\frac{8\times 16x^{2}}{8}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16x^{2} times \frac{8}{8}.
\frac{\left(x^{3}+3x\right)^{2}+8\times 16x^{2}}{8}
Since \frac{\left(x^{3}+3x\right)^{2}}{8} and \frac{8\times 16x^{2}}{8} have the same denominator, add them by adding their numerators.
\frac{x^{6}+6x^{4}+9x^{2}+128x^{2}}{8}
Do the multiplications in \left(x^{3}+3x\right)^{2}+8\times 16x^{2}.
\frac{x^{6}+6x^{4}+137x^{2}}{8}
Combine like terms in x^{6}+6x^{4}+9x^{2}+128x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}