Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(x^{2}x+\frac{9x^{2}yz}{3xyz}\right)^{2}}{8}+\left(4x\right)^{2}
Cancel out 7 and 7.
\frac{\left(x^{3}+\frac{9x^{2}yz}{3xyz}\right)^{2}}{8}+\left(4x\right)^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\left(x^{3}+3x\right)^{2}}{8}+\left(4x\right)^{2}
Cancel out 3xyz in both numerator and denominator.
\frac{\left(x^{3}+3x\right)^{2}}{8}+4^{2}x^{2}
Expand \left(4x\right)^{2}.
\frac{\left(x^{3}+3x\right)^{2}}{8}+16x^{2}
Calculate 4 to the power of 2 and get 16.
\frac{\left(x^{3}+3x\right)^{2}}{8}+\frac{8\times 16x^{2}}{8}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16x^{2} times \frac{8}{8}.
\frac{\left(x^{3}+3x\right)^{2}+8\times 16x^{2}}{8}
Since \frac{\left(x^{3}+3x\right)^{2}}{8} and \frac{8\times 16x^{2}}{8} have the same denominator, add them by adding their numerators.
\frac{x^{6}+6x^{4}+9x^{2}+128x^{2}}{8}
Do the multiplications in \left(x^{3}+3x\right)^{2}+8\times 16x^{2}.
\frac{x^{6}+6x^{4}+137x^{2}}{8}
Combine like terms in x^{6}+6x^{4}+9x^{2}+128x^{2}.
\frac{\left(x^{2}x+\frac{9x^{2}yz}{3xyz}\right)^{2}}{8}+\left(4x\right)^{2}
Cancel out 7 and 7.
\frac{\left(x^{3}+\frac{9x^{2}yz}{3xyz}\right)^{2}}{8}+\left(4x\right)^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\left(x^{3}+3x\right)^{2}}{8}+\left(4x\right)^{2}
Cancel out 3xyz in both numerator and denominator.
\frac{\left(x^{3}+3x\right)^{2}}{8}+4^{2}x^{2}
Expand \left(4x\right)^{2}.
\frac{\left(x^{3}+3x\right)^{2}}{8}+16x^{2}
Calculate 4 to the power of 2 and get 16.
\frac{\left(x^{3}+3x\right)^{2}}{8}+\frac{8\times 16x^{2}}{8}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16x^{2} times \frac{8}{8}.
\frac{\left(x^{3}+3x\right)^{2}+8\times 16x^{2}}{8}
Since \frac{\left(x^{3}+3x\right)^{2}}{8} and \frac{8\times 16x^{2}}{8} have the same denominator, add them by adding their numerators.
\frac{x^{6}+6x^{4}+9x^{2}+128x^{2}}{8}
Do the multiplications in \left(x^{3}+3x\right)^{2}+8\times 16x^{2}.
\frac{x^{6}+6x^{4}+137x^{2}}{8}
Combine like terms in x^{6}+6x^{4}+9x^{2}+128x^{2}.