Evaluate
\frac{287}{3}\approx 95.666666667
Factor
\frac{7 \cdot 41}{3} = 95\frac{2}{3} = 95.66666666666667
Share
Copied to clipboard
\left(54+\left(\frac{12}{15}+\frac{10}{15}\right)\times \frac{5}{11}\right)\times \frac{7}{4}
Least common multiple of 5 and 3 is 15. Convert \frac{4}{5} and \frac{2}{3} to fractions with denominator 15.
\left(54+\frac{12+10}{15}\times \frac{5}{11}\right)\times \frac{7}{4}
Since \frac{12}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
\left(54+\frac{22}{15}\times \frac{5}{11}\right)\times \frac{7}{4}
Add 12 and 10 to get 22.
\left(54+\frac{22\times 5}{15\times 11}\right)\times \frac{7}{4}
Multiply \frac{22}{15} times \frac{5}{11} by multiplying numerator times numerator and denominator times denominator.
\left(54+\frac{110}{165}\right)\times \frac{7}{4}
Do the multiplications in the fraction \frac{22\times 5}{15\times 11}.
\left(54+\frac{2}{3}\right)\times \frac{7}{4}
Reduce the fraction \frac{110}{165} to lowest terms by extracting and canceling out 55.
\left(\frac{162}{3}+\frac{2}{3}\right)\times \frac{7}{4}
Convert 54 to fraction \frac{162}{3}.
\frac{162+2}{3}\times \frac{7}{4}
Since \frac{162}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{164}{3}\times \frac{7}{4}
Add 162 and 2 to get 164.
\frac{164\times 7}{3\times 4}
Multiply \frac{164}{3} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1148}{12}
Do the multiplications in the fraction \frac{164\times 7}{3\times 4}.
\frac{287}{3}
Reduce the fraction \frac{1148}{12} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}