Solve for x
x = \frac{\sqrt{4237} + 25}{42} \approx 2.145053387
x=\frac{25-\sqrt{4237}}{42}\approx -0.954577196
Graph
Share
Copied to clipboard
5-21x\left(1-x\right)+2-4x-50=0
Subtract 50 from both sides.
5-21x\left(1-x\right)-48-4x=0
Subtract 50 from 2 to get -48.
5-21x\left(1-x\right)-4x=48
Add 48 to both sides. Anything plus zero gives itself.
5-21x\left(1-x\right)-4x-48=0
Subtract 48 from both sides.
5-21x+21x^{2}-4x-48=0
Use the distributive property to multiply -21x by 1-x.
5-25x+21x^{2}-48=0
Combine -21x and -4x to get -25x.
-43-25x+21x^{2}=0
Subtract 48 from 5 to get -43.
21x^{2}-25x-43=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 21\left(-43\right)}}{2\times 21}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 21 for a, -25 for b, and -43 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 21\left(-43\right)}}{2\times 21}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625-84\left(-43\right)}}{2\times 21}
Multiply -4 times 21.
x=\frac{-\left(-25\right)±\sqrt{625+3612}}{2\times 21}
Multiply -84 times -43.
x=\frac{-\left(-25\right)±\sqrt{4237}}{2\times 21}
Add 625 to 3612.
x=\frac{25±\sqrt{4237}}{2\times 21}
The opposite of -25 is 25.
x=\frac{25±\sqrt{4237}}{42}
Multiply 2 times 21.
x=\frac{\sqrt{4237}+25}{42}
Now solve the equation x=\frac{25±\sqrt{4237}}{42} when ± is plus. Add 25 to \sqrt{4237}.
x=\frac{25-\sqrt{4237}}{42}
Now solve the equation x=\frac{25±\sqrt{4237}}{42} when ± is minus. Subtract \sqrt{4237} from 25.
x=\frac{\sqrt{4237}+25}{42} x=\frac{25-\sqrt{4237}}{42}
The equation is now solved.
5-21x\left(1-x\right)-4x=50-2
Subtract 2 from both sides.
5-21x\left(1-x\right)-4x=48
Subtract 2 from 50 to get 48.
5-21x+21x^{2}-4x=48
Use the distributive property to multiply -21x by 1-x.
5-25x+21x^{2}=48
Combine -21x and -4x to get -25x.
-25x+21x^{2}=48-5
Subtract 5 from both sides.
-25x+21x^{2}=43
Subtract 5 from 48 to get 43.
21x^{2}-25x=43
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{21x^{2}-25x}{21}=\frac{43}{21}
Divide both sides by 21.
x^{2}-\frac{25}{21}x=\frac{43}{21}
Dividing by 21 undoes the multiplication by 21.
x^{2}-\frac{25}{21}x+\left(-\frac{25}{42}\right)^{2}=\frac{43}{21}+\left(-\frac{25}{42}\right)^{2}
Divide -\frac{25}{21}, the coefficient of the x term, by 2 to get -\frac{25}{42}. Then add the square of -\frac{25}{42} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{25}{21}x+\frac{625}{1764}=\frac{43}{21}+\frac{625}{1764}
Square -\frac{25}{42} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{25}{21}x+\frac{625}{1764}=\frac{4237}{1764}
Add \frac{43}{21} to \frac{625}{1764} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{25}{42}\right)^{2}=\frac{4237}{1764}
Factor x^{2}-\frac{25}{21}x+\frac{625}{1764}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{42}\right)^{2}}=\sqrt{\frac{4237}{1764}}
Take the square root of both sides of the equation.
x-\frac{25}{42}=\frac{\sqrt{4237}}{42} x-\frac{25}{42}=-\frac{\sqrt{4237}}{42}
Simplify.
x=\frac{\sqrt{4237}+25}{42} x=\frac{25-\sqrt{4237}}{42}
Add \frac{25}{42} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}