Evaluate
12
Factor
2^{2}\times 3
Share
Copied to clipboard
\frac{15}{3}-\frac{1}{3}-\left(-10-\frac{\left(-2\right)^{3}}{3}\right)
Convert 5 to fraction \frac{15}{3}.
\frac{15-1}{3}-\left(-10-\frac{\left(-2\right)^{3}}{3}\right)
Since \frac{15}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{14}{3}-\left(-10-\frac{\left(-2\right)^{3}}{3}\right)
Subtract 1 from 15 to get 14.
\frac{14}{3}-\left(-10-\frac{-8}{3}\right)
Calculate -2 to the power of 3 and get -8.
\frac{14}{3}-\left(-10-\left(-\frac{8}{3}\right)\right)
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
\frac{14}{3}-\left(-10+\frac{8}{3}\right)
The opposite of -\frac{8}{3} is \frac{8}{3}.
\frac{14}{3}-\left(-\frac{30}{3}+\frac{8}{3}\right)
Convert -10 to fraction -\frac{30}{3}.
\frac{14}{3}-\frac{-30+8}{3}
Since -\frac{30}{3} and \frac{8}{3} have the same denominator, add them by adding their numerators.
\frac{14}{3}-\left(-\frac{22}{3}\right)
Add -30 and 8 to get -22.
\frac{14}{3}+\frac{22}{3}
The opposite of -\frac{22}{3} is \frac{22}{3}.
\frac{14+22}{3}
Since \frac{14}{3} and \frac{22}{3} have the same denominator, add them by adding their numerators.
\frac{36}{3}
Add 14 and 22 to get 36.
12
Divide 36 by 3 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}