Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

30+30t+4t^{2}=600
Use the distributive property to multiply 30+4t by t.
30+30t+4t^{2}-600=0
Subtract 600 from both sides.
-570+30t+4t^{2}=0
Subtract 600 from 30 to get -570.
4t^{2}+30t-570=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-30±\sqrt{30^{2}-4\times 4\left(-570\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 30 for b, and -570 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-30±\sqrt{900-4\times 4\left(-570\right)}}{2\times 4}
Square 30.
t=\frac{-30±\sqrt{900-16\left(-570\right)}}{2\times 4}
Multiply -4 times 4.
t=\frac{-30±\sqrt{900+9120}}{2\times 4}
Multiply -16 times -570.
t=\frac{-30±\sqrt{10020}}{2\times 4}
Add 900 to 9120.
t=\frac{-30±2\sqrt{2505}}{2\times 4}
Take the square root of 10020.
t=\frac{-30±2\sqrt{2505}}{8}
Multiply 2 times 4.
t=\frac{2\sqrt{2505}-30}{8}
Now solve the equation t=\frac{-30±2\sqrt{2505}}{8} when ± is plus. Add -30 to 2\sqrt{2505}.
t=\frac{\sqrt{2505}-15}{4}
Divide -30+2\sqrt{2505} by 8.
t=\frac{-2\sqrt{2505}-30}{8}
Now solve the equation t=\frac{-30±2\sqrt{2505}}{8} when ± is minus. Subtract 2\sqrt{2505} from -30.
t=\frac{-\sqrt{2505}-15}{4}
Divide -30-2\sqrt{2505} by 8.
t=\frac{\sqrt{2505}-15}{4} t=\frac{-\sqrt{2505}-15}{4}
The equation is now solved.
30+30t+4t^{2}=600
Use the distributive property to multiply 30+4t by t.
30t+4t^{2}=600-30
Subtract 30 from both sides.
30t+4t^{2}=570
Subtract 30 from 600 to get 570.
4t^{2}+30t=570
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4t^{2}+30t}{4}=\frac{570}{4}
Divide both sides by 4.
t^{2}+\frac{30}{4}t=\frac{570}{4}
Dividing by 4 undoes the multiplication by 4.
t^{2}+\frac{15}{2}t=\frac{570}{4}
Reduce the fraction \frac{30}{4} to lowest terms by extracting and canceling out 2.
t^{2}+\frac{15}{2}t=\frac{285}{2}
Reduce the fraction \frac{570}{4} to lowest terms by extracting and canceling out 2.
t^{2}+\frac{15}{2}t+\left(\frac{15}{4}\right)^{2}=\frac{285}{2}+\left(\frac{15}{4}\right)^{2}
Divide \frac{15}{2}, the coefficient of the x term, by 2 to get \frac{15}{4}. Then add the square of \frac{15}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{15}{2}t+\frac{225}{16}=\frac{285}{2}+\frac{225}{16}
Square \frac{15}{4} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{15}{2}t+\frac{225}{16}=\frac{2505}{16}
Add \frac{285}{2} to \frac{225}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{15}{4}\right)^{2}=\frac{2505}{16}
Factor t^{2}+\frac{15}{2}t+\frac{225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{15}{4}\right)^{2}}=\sqrt{\frac{2505}{16}}
Take the square root of both sides of the equation.
t+\frac{15}{4}=\frac{\sqrt{2505}}{4} t+\frac{15}{4}=-\frac{\sqrt{2505}}{4}
Simplify.
t=\frac{\sqrt{2505}-15}{4} t=\frac{-\sqrt{2505}-15}{4}
Subtract \frac{15}{4} from both sides of the equation.