Evaluate
\frac{8a\left(3a+4b\right)}{5a+3}
Expand
\frac{8\left(3a^{2}+4ab\right)}{5a+3}
Share
Copied to clipboard
\frac{3a\left(2a+b\right)+5ab}{\frac{3a^{2}b^{2}-a^{3}b^{2}\left(-5\right)}{\left(-2ab\right)^{2}}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{3a\left(2a+b\right)+5ab}{\frac{3a^{2}b^{2}-a^{3}b^{2}\left(-5\right)}{\left(-2\right)^{2}a^{2}b^{2}}}
Expand \left(-2ab\right)^{2}.
\frac{3a\left(2a+b\right)+5ab}{\frac{3a^{2}b^{2}-a^{3}b^{2}\left(-5\right)}{4a^{2}b^{2}}}
Calculate -2 to the power of 2 and get 4.
\frac{3a\left(2a+b\right)+5ab}{\frac{\left(5a+3\right)a^{2}b^{2}}{4a^{2}b^{2}}}
Factor the expressions that are not already factored in \frac{3a^{2}b^{2}-a^{3}b^{2}\left(-5\right)}{4a^{2}b^{2}}.
\frac{3a\left(2a+b\right)+5ab}{\frac{5a+3}{4}}
Cancel out a^{2}b^{2} in both numerator and denominator.
\frac{\left(3a\left(2a+b\right)+5ab\right)\times 4}{5a+3}
Divide 3a\left(2a+b\right)+5ab by \frac{5a+3}{4} by multiplying 3a\left(2a+b\right)+5ab by the reciprocal of \frac{5a+3}{4}.
\frac{\left(6a^{2}+3ab+5ab\right)\times 4}{5a+3}
Use the distributive property to multiply 3a by 2a+b.
\frac{\left(6a^{2}+8ab\right)\times 4}{5a+3}
Combine 3ab and 5ab to get 8ab.
\frac{24a^{2}+32ab}{5a+3}
Use the distributive property to multiply 6a^{2}+8ab by 4.
\frac{3a\left(2a+b\right)+5ab}{\frac{3a^{2}b^{2}-a^{3}b^{2}\left(-5\right)}{\left(-2ab\right)^{2}}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{3a\left(2a+b\right)+5ab}{\frac{3a^{2}b^{2}-a^{3}b^{2}\left(-5\right)}{\left(-2\right)^{2}a^{2}b^{2}}}
Expand \left(-2ab\right)^{2}.
\frac{3a\left(2a+b\right)+5ab}{\frac{3a^{2}b^{2}-a^{3}b^{2}\left(-5\right)}{4a^{2}b^{2}}}
Calculate -2 to the power of 2 and get 4.
\frac{3a\left(2a+b\right)+5ab}{\frac{\left(5a+3\right)a^{2}b^{2}}{4a^{2}b^{2}}}
Factor the expressions that are not already factored in \frac{3a^{2}b^{2}-a^{3}b^{2}\left(-5\right)}{4a^{2}b^{2}}.
\frac{3a\left(2a+b\right)+5ab}{\frac{5a+3}{4}}
Cancel out a^{2}b^{2} in both numerator and denominator.
\frac{\left(3a\left(2a+b\right)+5ab\right)\times 4}{5a+3}
Divide 3a\left(2a+b\right)+5ab by \frac{5a+3}{4} by multiplying 3a\left(2a+b\right)+5ab by the reciprocal of \frac{5a+3}{4}.
\frac{\left(6a^{2}+3ab+5ab\right)\times 4}{5a+3}
Use the distributive property to multiply 3a by 2a+b.
\frac{\left(6a^{2}+8ab\right)\times 4}{5a+3}
Combine 3ab and 5ab to get 8ab.
\frac{24a^{2}+32ab}{5a+3}
Use the distributive property to multiply 6a^{2}+8ab by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}