Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3a\left(2a+b\right)+5ab}{\frac{3a^{2}b^{2}-a^{3}b^{2}\left(-5\right)}{\left(-2ab\right)^{2}}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{3a\left(2a+b\right)+5ab}{\frac{3a^{2}b^{2}-a^{3}b^{2}\left(-5\right)}{\left(-2\right)^{2}a^{2}b^{2}}}
Expand \left(-2ab\right)^{2}.
\frac{3a\left(2a+b\right)+5ab}{\frac{3a^{2}b^{2}-a^{3}b^{2}\left(-5\right)}{4a^{2}b^{2}}}
Calculate -2 to the power of 2 and get 4.
\frac{3a\left(2a+b\right)+5ab}{\frac{\left(5a+3\right)a^{2}b^{2}}{4a^{2}b^{2}}}
Factor the expressions that are not already factored in \frac{3a^{2}b^{2}-a^{3}b^{2}\left(-5\right)}{4a^{2}b^{2}}.
\frac{3a\left(2a+b\right)+5ab}{\frac{5a+3}{4}}
Cancel out a^{2}b^{2} in both numerator and denominator.
\frac{\left(3a\left(2a+b\right)+5ab\right)\times 4}{5a+3}
Divide 3a\left(2a+b\right)+5ab by \frac{5a+3}{4} by multiplying 3a\left(2a+b\right)+5ab by the reciprocal of \frac{5a+3}{4}.
\frac{\left(6a^{2}+3ab+5ab\right)\times 4}{5a+3}
Use the distributive property to multiply 3a by 2a+b.
\frac{\left(6a^{2}+8ab\right)\times 4}{5a+3}
Combine 3ab and 5ab to get 8ab.
\frac{24a^{2}+32ab}{5a+3}
Use the distributive property to multiply 6a^{2}+8ab by 4.
\frac{3a\left(2a+b\right)+5ab}{\frac{3a^{2}b^{2}-a^{3}b^{2}\left(-5\right)}{\left(-2ab\right)^{2}}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{3a\left(2a+b\right)+5ab}{\frac{3a^{2}b^{2}-a^{3}b^{2}\left(-5\right)}{\left(-2\right)^{2}a^{2}b^{2}}}
Expand \left(-2ab\right)^{2}.
\frac{3a\left(2a+b\right)+5ab}{\frac{3a^{2}b^{2}-a^{3}b^{2}\left(-5\right)}{4a^{2}b^{2}}}
Calculate -2 to the power of 2 and get 4.
\frac{3a\left(2a+b\right)+5ab}{\frac{\left(5a+3\right)a^{2}b^{2}}{4a^{2}b^{2}}}
Factor the expressions that are not already factored in \frac{3a^{2}b^{2}-a^{3}b^{2}\left(-5\right)}{4a^{2}b^{2}}.
\frac{3a\left(2a+b\right)+5ab}{\frac{5a+3}{4}}
Cancel out a^{2}b^{2} in both numerator and denominator.
\frac{\left(3a\left(2a+b\right)+5ab\right)\times 4}{5a+3}
Divide 3a\left(2a+b\right)+5ab by \frac{5a+3}{4} by multiplying 3a\left(2a+b\right)+5ab by the reciprocal of \frac{5a+3}{4}.
\frac{\left(6a^{2}+3ab+5ab\right)\times 4}{5a+3}
Use the distributive property to multiply 3a by 2a+b.
\frac{\left(6a^{2}+8ab\right)\times 4}{5a+3}
Combine 3ab and 5ab to get 8ab.
\frac{24a^{2}+32ab}{5a+3}
Use the distributive property to multiply 6a^{2}+8ab by 4.