Solve for x
x\geq \frac{7}{100}
Graph
Share
Copied to clipboard
266-200\left(1-x\right)\geq \frac{9200}{115}
Divide both sides by 115. Since 115 is positive, the inequality direction remains the same.
266-200\left(1-x\right)\geq 80
Divide 9200 by 115 to get 80.
266-200+200x\geq 80
Use the distributive property to multiply -200 by 1-x.
66+200x\geq 80
Subtract 200 from 266 to get 66.
200x\geq 80-66
Subtract 66 from both sides.
200x\geq 14
Subtract 66 from 80 to get 14.
x\geq \frac{14}{200}
Divide both sides by 200. Since 200 is positive, the inequality direction remains the same.
x\geq \frac{7}{100}
Reduce the fraction \frac{14}{200} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}