Solve for x
x = \frac{172678}{1035} = 166\frac{868}{1035} \approx 166.838647343
Graph
Share
Copied to clipboard
10\left(225\times \frac{x}{10}-\left(88+5\right)\right)-\frac{10}{23}\times 3700=35000
Multiply both sides of the equation by 10.
10\left(\frac{225x}{10}-\left(88+5\right)\right)-\frac{10}{23}\times 3700=35000
Express 225\times \frac{x}{10} as a single fraction.
10\left(\frac{225x}{10}-93\right)-\frac{10}{23}\times 3700=35000
Add 88 and 5 to get 93.
10\times \frac{225x}{10}-930-\frac{10}{23}\times 3700=35000
Use the distributive property to multiply 10 by \frac{225x}{10}-93.
10\times \frac{45}{2}x-930-\frac{10}{23}\times 3700=35000
Divide 225x by 10 to get \frac{45}{2}x.
\frac{10\times 45}{2}x-930-\frac{10}{23}\times 3700=35000
Express 10\times \frac{45}{2} as a single fraction.
\frac{450}{2}x-930-\frac{10}{23}\times 3700=35000
Multiply 10 and 45 to get 450.
225x-930-\frac{10}{23}\times 3700=35000
Divide 450 by 2 to get 225.
225x-930+\frac{-10\times 3700}{23}=35000
Express -\frac{10}{23}\times 3700 as a single fraction.
225x-930+\frac{-37000}{23}=35000
Multiply -10 and 3700 to get -37000.
225x-930-\frac{37000}{23}=35000
Fraction \frac{-37000}{23} can be rewritten as -\frac{37000}{23} by extracting the negative sign.
225x-\frac{21390}{23}-\frac{37000}{23}=35000
Convert -930 to fraction -\frac{21390}{23}.
225x+\frac{-21390-37000}{23}=35000
Since -\frac{21390}{23} and \frac{37000}{23} have the same denominator, subtract them by subtracting their numerators.
225x-\frac{58390}{23}=35000
Subtract 37000 from -21390 to get -58390.
225x=35000+\frac{58390}{23}
Add \frac{58390}{23} to both sides.
225x=\frac{805000}{23}+\frac{58390}{23}
Convert 35000 to fraction \frac{805000}{23}.
225x=\frac{805000+58390}{23}
Since \frac{805000}{23} and \frac{58390}{23} have the same denominator, add them by adding their numerators.
225x=\frac{863390}{23}
Add 805000 and 58390 to get 863390.
x=\frac{\frac{863390}{23}}{225}
Divide both sides by 225.
x=\frac{863390}{23\times 225}
Express \frac{\frac{863390}{23}}{225} as a single fraction.
x=\frac{863390}{5175}
Multiply 23 and 225 to get 5175.
x=\frac{172678}{1035}
Reduce the fraction \frac{863390}{5175} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}