[ 2 z - ( - \frac { 4 } { 3 } z ) + ( \frac { 3 } { 2 } z ) ] - ( - \frac { 3 } { 4 } x ) - ( - \frac { 1 } { 3 } z ) + ( - 0,5 x - \frac { 1 } { 4 } x )
Evaluate
\frac{31z}{6}
Differentiate w.r.t. z
\frac{31}{6} = 5\frac{1}{6} = 5.166666666666667
Share
Copied to clipboard
2z+\frac{4}{3}z+\frac{3}{2}z-\left(-\frac{3}{4}x\right)-\left(-\frac{1}{3}z\right)-0,5x-\frac{1}{4}x
The opposite of -\frac{4}{3}z is \frac{4}{3}z.
\frac{10}{3}z+\frac{3}{2}z-\left(-\frac{3}{4}x\right)-\left(-\frac{1}{3}z\right)-0,5x-\frac{1}{4}x
Combine 2z and \frac{4}{3}z to get \frac{10}{3}z.
\frac{29}{6}z-\left(-\frac{3}{4}x\right)-\left(-\frac{1}{3}z\right)-0,5x-\frac{1}{4}x
Combine \frac{10}{3}z and \frac{3}{2}z to get \frac{29}{6}z.
\frac{29}{6}z+\frac{3}{4}x-\left(-\frac{1}{3}z\right)-0,5x-\frac{1}{4}x
The opposite of -\frac{3}{4}x is \frac{3}{4}x.
\frac{29}{6}z+\frac{3}{4}x+\frac{1}{3}z-0,5x-\frac{1}{4}x
The opposite of -\frac{1}{3}z is \frac{1}{3}z.
\frac{31}{6}z+\frac{3}{4}x-0,5x-\frac{1}{4}x
Combine \frac{29}{6}z and \frac{1}{3}z to get \frac{31}{6}z.
\frac{31}{6}z+\frac{1}{4}x-\frac{1}{4}x
Combine \frac{3}{4}x and -0,5x to get \frac{1}{4}x.
\frac{31}{6}z
Combine \frac{1}{4}x and -\frac{1}{4}x to get 0.
\frac{\mathrm{d}}{\mathrm{d}z}(2z+\frac{4}{3}z+\frac{3}{2}z-\left(-\frac{3}{4}x\right)-\left(-\frac{1}{3}z\right)-0,5x-\frac{1}{4}x)
The opposite of -\frac{4}{3}z is \frac{4}{3}z.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{10}{3}z+\frac{3}{2}z-\left(-\frac{3}{4}x\right)-\left(-\frac{1}{3}z\right)-0,5x-\frac{1}{4}x)
Combine 2z and \frac{4}{3}z to get \frac{10}{3}z.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{29}{6}z-\left(-\frac{3}{4}x\right)-\left(-\frac{1}{3}z\right)-0,5x-\frac{1}{4}x)
Combine \frac{10}{3}z and \frac{3}{2}z to get \frac{29}{6}z.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{29}{6}z+\frac{3}{4}x-\left(-\frac{1}{3}z\right)-0,5x-\frac{1}{4}x)
The opposite of -\frac{3}{4}x is \frac{3}{4}x.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{29}{6}z+\frac{3}{4}x+\frac{1}{3}z-0,5x-\frac{1}{4}x)
The opposite of -\frac{1}{3}z is \frac{1}{3}z.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{31}{6}z+\frac{3}{4}x-0,5x-\frac{1}{4}x)
Combine \frac{29}{6}z and \frac{1}{3}z to get \frac{31}{6}z.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{31}{6}z+\frac{1}{4}x-\frac{1}{4}x)
Combine \frac{3}{4}x and -0,5x to get \frac{1}{4}x.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{31}{6}z)
Combine \frac{1}{4}x and -\frac{1}{4}x to get 0.
\frac{31}{6}z^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{31}{6}z^{0}
Subtract 1 from 1.
\frac{31}{6}\times 1
For any term t except 0, t^{0}=1.
\frac{31}{6}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}