Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. z
Tick mark Image

Similar Problems from Web Search

Share

2z+\frac{4}{3}z+\frac{3}{2}z-\left(-\frac{3}{4}x\right)-\left(-\frac{1}{3}z\right)-0,5x-\frac{1}{4}x
The opposite of -\frac{4}{3}z is \frac{4}{3}z.
\frac{10}{3}z+\frac{3}{2}z-\left(-\frac{3}{4}x\right)-\left(-\frac{1}{3}z\right)-0,5x-\frac{1}{4}x
Combine 2z and \frac{4}{3}z to get \frac{10}{3}z.
\frac{29}{6}z-\left(-\frac{3}{4}x\right)-\left(-\frac{1}{3}z\right)-0,5x-\frac{1}{4}x
Combine \frac{10}{3}z and \frac{3}{2}z to get \frac{29}{6}z.
\frac{29}{6}z+\frac{3}{4}x-\left(-\frac{1}{3}z\right)-0,5x-\frac{1}{4}x
The opposite of -\frac{3}{4}x is \frac{3}{4}x.
\frac{29}{6}z+\frac{3}{4}x+\frac{1}{3}z-0,5x-\frac{1}{4}x
The opposite of -\frac{1}{3}z is \frac{1}{3}z.
\frac{31}{6}z+\frac{3}{4}x-0,5x-\frac{1}{4}x
Combine \frac{29}{6}z and \frac{1}{3}z to get \frac{31}{6}z.
\frac{31}{6}z+\frac{1}{4}x-\frac{1}{4}x
Combine \frac{3}{4}x and -0,5x to get \frac{1}{4}x.
\frac{31}{6}z
Combine \frac{1}{4}x and -\frac{1}{4}x to get 0.
\frac{\mathrm{d}}{\mathrm{d}z}(2z+\frac{4}{3}z+\frac{3}{2}z-\left(-\frac{3}{4}x\right)-\left(-\frac{1}{3}z\right)-0,5x-\frac{1}{4}x)
The opposite of -\frac{4}{3}z is \frac{4}{3}z.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{10}{3}z+\frac{3}{2}z-\left(-\frac{3}{4}x\right)-\left(-\frac{1}{3}z\right)-0,5x-\frac{1}{4}x)
Combine 2z and \frac{4}{3}z to get \frac{10}{3}z.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{29}{6}z-\left(-\frac{3}{4}x\right)-\left(-\frac{1}{3}z\right)-0,5x-\frac{1}{4}x)
Combine \frac{10}{3}z and \frac{3}{2}z to get \frac{29}{6}z.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{29}{6}z+\frac{3}{4}x-\left(-\frac{1}{3}z\right)-0,5x-\frac{1}{4}x)
The opposite of -\frac{3}{4}x is \frac{3}{4}x.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{29}{6}z+\frac{3}{4}x+\frac{1}{3}z-0,5x-\frac{1}{4}x)
The opposite of -\frac{1}{3}z is \frac{1}{3}z.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{31}{6}z+\frac{3}{4}x-0,5x-\frac{1}{4}x)
Combine \frac{29}{6}z and \frac{1}{3}z to get \frac{31}{6}z.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{31}{6}z+\frac{1}{4}x-\frac{1}{4}x)
Combine \frac{3}{4}x and -0,5x to get \frac{1}{4}x.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{31}{6}z)
Combine \frac{1}{4}x and -\frac{1}{4}x to get 0.
\frac{31}{6}z^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{31}{6}z^{0}
Subtract 1 from 1.
\frac{31}{6}\times 1
For any term t except 0, t^{0}=1.
\frac{31}{6}
For any term t, t\times 1=t and 1t=t.