Evaluate
-i
Real Part
0
Share
Copied to clipboard
\left(2i-3\left(-i\right)^{3}\right)^{5}+\left(-2i\right)^{15}+\left(3i^{7}-5i\right)^{5}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
\left(2i-3i\right)^{5}+\left(-2i\right)^{15}+\left(3i^{7}-5i\right)^{5}
Calculate -i to the power of 3 and get i.
\left(-i\right)^{5}+\left(-2i\right)^{15}+\left(3i^{7}-5i\right)^{5}
Subtract 3i from 2i to get -i.
-i+\left(-2i\right)^{15}+\left(3i^{7}-5i\right)^{5}
Calculate -i to the power of 5 and get -i.
-i+32768i+\left(3i^{7}-5i\right)^{5}
Calculate -2i to the power of 15 and get 32768i.
32767i+\left(3i^{7}-5i\right)^{5}
Add -i and 32768i to get 32767i.
32767i+\left(3\left(-i\right)-5i\right)^{5}
Calculate i to the power of 7 and get -i.
32767i+\left(-3i-5i\right)^{5}
Multiply 3 and -i to get -3i.
32767i+\left(-8i\right)^{5}
Subtract 5i from -3i to get -8i.
32767i-32768i
Calculate -8i to the power of 5 and get -32768i.
-i
Subtract 32768i from 32767i to get -i.
Re(\left(2i-3\left(-i\right)^{3}\right)^{5}+\left(-2i\right)^{15}+\left(3i^{7}-5i\right)^{5})
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
Re(\left(2i-3i\right)^{5}+\left(-2i\right)^{15}+\left(3i^{7}-5i\right)^{5})
Calculate -i to the power of 3 and get i.
Re(\left(-i\right)^{5}+\left(-2i\right)^{15}+\left(3i^{7}-5i\right)^{5})
Subtract 3i from 2i to get -i.
Re(-i+\left(-2i\right)^{15}+\left(3i^{7}-5i\right)^{5})
Calculate -i to the power of 5 and get -i.
Re(-i+32768i+\left(3i^{7}-5i\right)^{5})
Calculate -2i to the power of 15 and get 32768i.
Re(32767i+\left(3i^{7}-5i\right)^{5})
Add -i and 32768i to get 32767i.
Re(32767i+\left(3\left(-i\right)-5i\right)^{5})
Calculate i to the power of 7 and get -i.
Re(32767i+\left(-3i-5i\right)^{5})
Multiply 3 and -i to get -3i.
Re(32767i+\left(-8i\right)^{5})
Subtract 5i from -3i to get -8i.
Re(32767i-32768i)
Calculate -8i to the power of 5 and get -32768i.
Re(-i)
Subtract 32768i from 32767i to get -i.
0
The real part of -i is 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}