Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(2i-3\left(-i\right)^{3}\right)^{5}+\left(-2i\right)^{15}+\left(3i^{7}-5i\right)^{5}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
\left(2i-3i\right)^{5}+\left(-2i\right)^{15}+\left(3i^{7}-5i\right)^{5}
Calculate -i to the power of 3 and get i.
\left(-i\right)^{5}+\left(-2i\right)^{15}+\left(3i^{7}-5i\right)^{5}
Subtract 3i from 2i to get -i.
-i+\left(-2i\right)^{15}+\left(3i^{7}-5i\right)^{5}
Calculate -i to the power of 5 and get -i.
-i+32768i+\left(3i^{7}-5i\right)^{5}
Calculate -2i to the power of 15 and get 32768i.
32767i+\left(3i^{7}-5i\right)^{5}
Add -i and 32768i to get 32767i.
32767i+\left(3\left(-i\right)-5i\right)^{5}
Calculate i to the power of 7 and get -i.
32767i+\left(-3i-5i\right)^{5}
Multiply 3 and -i to get -3i.
32767i+\left(-8i\right)^{5}
Subtract 5i from -3i to get -8i.
32767i-32768i
Calculate -8i to the power of 5 and get -32768i.
-i
Subtract 32768i from 32767i to get -i.
Re(\left(2i-3\left(-i\right)^{3}\right)^{5}+\left(-2i\right)^{15}+\left(3i^{7}-5i\right)^{5})
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
Re(\left(2i-3i\right)^{5}+\left(-2i\right)^{15}+\left(3i^{7}-5i\right)^{5})
Calculate -i to the power of 3 and get i.
Re(\left(-i\right)^{5}+\left(-2i\right)^{15}+\left(3i^{7}-5i\right)^{5})
Subtract 3i from 2i to get -i.
Re(-i+\left(-2i\right)^{15}+\left(3i^{7}-5i\right)^{5})
Calculate -i to the power of 5 and get -i.
Re(-i+32768i+\left(3i^{7}-5i\right)^{5})
Calculate -2i to the power of 15 and get 32768i.
Re(32767i+\left(3i^{7}-5i\right)^{5})
Add -i and 32768i to get 32767i.
Re(32767i+\left(3\left(-i\right)-5i\right)^{5})
Calculate i to the power of 7 and get -i.
Re(32767i+\left(-3i-5i\right)^{5})
Multiply 3 and -i to get -3i.
Re(32767i+\left(-8i\right)^{5})
Subtract 5i from -3i to get -8i.
Re(32767i-32768i)
Calculate -8i to the power of 5 and get -32768i.
Re(-i)
Subtract 32768i from 32767i to get -i.
0
The real part of -i is 0.