Solve for x
x=\frac{\sqrt{9601}-79}{60}\approx 0.316411545
x=\frac{-\sqrt{9601}-79}{60}\approx -2.949744878
Graph
Share
Copied to clipboard
30-15\left(2x+5\right)+5\left(x-1\right)+75x^{2}=15x^{2}-180x-3\left(x-2\right)
Multiply both sides of the equation by 15, the least common multiple of 3,5.
30-30x-75+5\left(x-1\right)+75x^{2}=15x^{2}-180x-3\left(x-2\right)
Use the distributive property to multiply -15 by 2x+5.
-45-30x+5\left(x-1\right)+75x^{2}=15x^{2}-180x-3\left(x-2\right)
Subtract 75 from 30 to get -45.
-45-30x+5x-5+75x^{2}=15x^{2}-180x-3\left(x-2\right)
Use the distributive property to multiply 5 by x-1.
-45-25x-5+75x^{2}=15x^{2}-180x-3\left(x-2\right)
Combine -30x and 5x to get -25x.
-50-25x+75x^{2}=15x^{2}-180x-3\left(x-2\right)
Subtract 5 from -45 to get -50.
-50-25x+75x^{2}=15x^{2}-180x-3x+6
Use the distributive property to multiply -3 by x-2.
-50-25x+75x^{2}=15x^{2}-183x+6
Combine -180x and -3x to get -183x.
-50-25x+75x^{2}-15x^{2}=-183x+6
Subtract 15x^{2} from both sides.
-50-25x+60x^{2}=-183x+6
Combine 75x^{2} and -15x^{2} to get 60x^{2}.
-50-25x+60x^{2}+183x=6
Add 183x to both sides.
-50+158x+60x^{2}=6
Combine -25x and 183x to get 158x.
-50+158x+60x^{2}-6=0
Subtract 6 from both sides.
-56+158x+60x^{2}=0
Subtract 6 from -50 to get -56.
60x^{2}+158x-56=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-158±\sqrt{158^{2}-4\times 60\left(-56\right)}}{2\times 60}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 60 for a, 158 for b, and -56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-158±\sqrt{24964-4\times 60\left(-56\right)}}{2\times 60}
Square 158.
x=\frac{-158±\sqrt{24964-240\left(-56\right)}}{2\times 60}
Multiply -4 times 60.
x=\frac{-158±\sqrt{24964+13440}}{2\times 60}
Multiply -240 times -56.
x=\frac{-158±\sqrt{38404}}{2\times 60}
Add 24964 to 13440.
x=\frac{-158±2\sqrt{9601}}{2\times 60}
Take the square root of 38404.
x=\frac{-158±2\sqrt{9601}}{120}
Multiply 2 times 60.
x=\frac{2\sqrt{9601}-158}{120}
Now solve the equation x=\frac{-158±2\sqrt{9601}}{120} when ± is plus. Add -158 to 2\sqrt{9601}.
x=\frac{\sqrt{9601}-79}{60}
Divide -158+2\sqrt{9601} by 120.
x=\frac{-2\sqrt{9601}-158}{120}
Now solve the equation x=\frac{-158±2\sqrt{9601}}{120} when ± is minus. Subtract 2\sqrt{9601} from -158.
x=\frac{-\sqrt{9601}-79}{60}
Divide -158-2\sqrt{9601} by 120.
x=\frac{\sqrt{9601}-79}{60} x=\frac{-\sqrt{9601}-79}{60}
The equation is now solved.
30-15\left(2x+5\right)+5\left(x-1\right)+75x^{2}=15x^{2}-180x-3\left(x-2\right)
Multiply both sides of the equation by 15, the least common multiple of 3,5.
30-30x-75+5\left(x-1\right)+75x^{2}=15x^{2}-180x-3\left(x-2\right)
Use the distributive property to multiply -15 by 2x+5.
-45-30x+5\left(x-1\right)+75x^{2}=15x^{2}-180x-3\left(x-2\right)
Subtract 75 from 30 to get -45.
-45-30x+5x-5+75x^{2}=15x^{2}-180x-3\left(x-2\right)
Use the distributive property to multiply 5 by x-1.
-45-25x-5+75x^{2}=15x^{2}-180x-3\left(x-2\right)
Combine -30x and 5x to get -25x.
-50-25x+75x^{2}=15x^{2}-180x-3\left(x-2\right)
Subtract 5 from -45 to get -50.
-50-25x+75x^{2}=15x^{2}-180x-3x+6
Use the distributive property to multiply -3 by x-2.
-50-25x+75x^{2}=15x^{2}-183x+6
Combine -180x and -3x to get -183x.
-50-25x+75x^{2}-15x^{2}=-183x+6
Subtract 15x^{2} from both sides.
-50-25x+60x^{2}=-183x+6
Combine 75x^{2} and -15x^{2} to get 60x^{2}.
-50-25x+60x^{2}+183x=6
Add 183x to both sides.
-50+158x+60x^{2}=6
Combine -25x and 183x to get 158x.
158x+60x^{2}=6+50
Add 50 to both sides.
158x+60x^{2}=56
Add 6 and 50 to get 56.
60x^{2}+158x=56
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{60x^{2}+158x}{60}=\frac{56}{60}
Divide both sides by 60.
x^{2}+\frac{158}{60}x=\frac{56}{60}
Dividing by 60 undoes the multiplication by 60.
x^{2}+\frac{79}{30}x=\frac{56}{60}
Reduce the fraction \frac{158}{60} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{79}{30}x=\frac{14}{15}
Reduce the fraction \frac{56}{60} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{79}{30}x+\left(\frac{79}{60}\right)^{2}=\frac{14}{15}+\left(\frac{79}{60}\right)^{2}
Divide \frac{79}{30}, the coefficient of the x term, by 2 to get \frac{79}{60}. Then add the square of \frac{79}{60} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{79}{30}x+\frac{6241}{3600}=\frac{14}{15}+\frac{6241}{3600}
Square \frac{79}{60} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{79}{30}x+\frac{6241}{3600}=\frac{9601}{3600}
Add \frac{14}{15} to \frac{6241}{3600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{79}{60}\right)^{2}=\frac{9601}{3600}
Factor x^{2}+\frac{79}{30}x+\frac{6241}{3600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{79}{60}\right)^{2}}=\sqrt{\frac{9601}{3600}}
Take the square root of both sides of the equation.
x+\frac{79}{60}=\frac{\sqrt{9601}}{60} x+\frac{79}{60}=-\frac{\sqrt{9601}}{60}
Simplify.
x=\frac{\sqrt{9601}-79}{60} x=\frac{-\sqrt{9601}-79}{60}
Subtract \frac{79}{60} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}