[ 2 - ( 1 - 0,5 x \frac { 2 } { 3 } ) ] \times [ 7 + ( - 1 ) ^ { 3 } ]
Evaluate
2\left(x+3\right)
Expand
2x+6
Graph
Share
Copied to clipboard
\left(2-\left(1-\frac{1}{2}x\times \frac{2}{3}\right)\right)\left(7+\left(-1\right)^{3}\right)
Convert decimal number 0,5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\left(2-\left(1-\frac{1\times 2}{2\times 3}x\right)\right)\left(7+\left(-1\right)^{3}\right)
Multiply \frac{1}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\left(2-\left(1-\frac{1}{3}x\right)\right)\left(7+\left(-1\right)^{3}\right)
Cancel out 2 in both numerator and denominator.
\left(2-1-\left(-\frac{1}{3}x\right)\right)\left(7+\left(-1\right)^{3}\right)
To find the opposite of 1-\frac{1}{3}x, find the opposite of each term.
\left(2-1+\frac{1}{3}x\right)\left(7+\left(-1\right)^{3}\right)
The opposite of -\frac{1}{3}x is \frac{1}{3}x.
\left(1+\frac{1}{3}x\right)\left(7+\left(-1\right)^{3}\right)
Subtract 1 from 2 to get 1.
\left(1+\frac{1}{3}x\right)\left(7-1\right)
Calculate -1 to the power of 3 and get -1.
\left(1+\frac{1}{3}x\right)\times 6
Subtract 1 from 7 to get 6.
6+\frac{1}{3}x\times 6
Use the distributive property to multiply 1+\frac{1}{3}x by 6.
6+\frac{6}{3}x
Multiply \frac{1}{3} and 6 to get \frac{6}{3}.
6+2x
Divide 6 by 3 to get 2.
\left(2-\left(1-\frac{1}{2}x\times \frac{2}{3}\right)\right)\left(7+\left(-1\right)^{3}\right)
Convert decimal number 0,5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\left(2-\left(1-\frac{1\times 2}{2\times 3}x\right)\right)\left(7+\left(-1\right)^{3}\right)
Multiply \frac{1}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\left(2-\left(1-\frac{1}{3}x\right)\right)\left(7+\left(-1\right)^{3}\right)
Cancel out 2 in both numerator and denominator.
\left(2-1-\left(-\frac{1}{3}x\right)\right)\left(7+\left(-1\right)^{3}\right)
To find the opposite of 1-\frac{1}{3}x, find the opposite of each term.
\left(2-1+\frac{1}{3}x\right)\left(7+\left(-1\right)^{3}\right)
The opposite of -\frac{1}{3}x is \frac{1}{3}x.
\left(1+\frac{1}{3}x\right)\left(7+\left(-1\right)^{3}\right)
Subtract 1 from 2 to get 1.
\left(1+\frac{1}{3}x\right)\left(7-1\right)
Calculate -1 to the power of 3 and get -1.
\left(1+\frac{1}{3}x\right)\times 6
Subtract 1 from 7 to get 6.
6+\frac{1}{3}x\times 6
Use the distributive property to multiply 1+\frac{1}{3}x by 6.
6+\frac{6}{3}x
Multiply \frac{1}{3} and 6 to get \frac{6}{3}.
6+2x
Divide 6 by 3 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}