Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x+2-1\right)\left(x+1\right)=1.1232
Use the distributive property to multiply 2 by x+1.
\left(2x+1\right)\left(x+1\right)=1.1232
Subtract 1 from 2 to get 1.
2x^{2}+2x+x+1=1.1232
Apply the distributive property by multiplying each term of 2x+1 by each term of x+1.
2x^{2}+3x+1=1.1232
Combine 2x and x to get 3x.
2x^{2}+3x+1-1.1232=0
Subtract 1.1232 from both sides.
2x^{2}+3x-0.1232=0
Subtract 1.1232 from 1 to get -0.1232.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-0.1232\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 3 for b, and -0.1232 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-0.1232\right)}}{2\times 2}
Square 3.
x=\frac{-3±\sqrt{9-8\left(-0.1232\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-3±\sqrt{9+0.9856}}{2\times 2}
Multiply -8 times -0.1232.
x=\frac{-3±\sqrt{9.9856}}{2\times 2}
Add 9 to 0.9856.
x=\frac{-3±\frac{79}{25}}{2\times 2}
Take the square root of 9.9856.
x=\frac{-3±\frac{79}{25}}{4}
Multiply 2 times 2.
x=\frac{\frac{4}{25}}{4}
Now solve the equation x=\frac{-3±\frac{79}{25}}{4} when ± is plus. Add -3 to \frac{79}{25}.
x=\frac{1}{25}
Divide \frac{4}{25} by 4.
x=-\frac{\frac{154}{25}}{4}
Now solve the equation x=\frac{-3±\frac{79}{25}}{4} when ± is minus. Subtract \frac{79}{25} from -3.
x=-\frac{77}{50}
Divide -\frac{154}{25} by 4.
x=\frac{1}{25} x=-\frac{77}{50}
The equation is now solved.
\left(2x+2-1\right)\left(x+1\right)=1.1232
Use the distributive property to multiply 2 by x+1.
\left(2x+1\right)\left(x+1\right)=1.1232
Subtract 1 from 2 to get 1.
2x^{2}+2x+x+1=1.1232
Apply the distributive property by multiplying each term of 2x+1 by each term of x+1.
2x^{2}+3x+1=1.1232
Combine 2x and x to get 3x.
2x^{2}+3x=1.1232-1
Subtract 1 from both sides.
2x^{2}+3x=0.1232
Subtract 1 from 1.1232 to get 0.1232.
\frac{2x^{2}+3x}{2}=\frac{0.1232}{2}
Divide both sides by 2.
x^{2}+\frac{3}{2}x=\frac{0.1232}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{3}{2}x=0.0616
Divide 0.1232 by 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=0.0616+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=0.0616+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{6241}{10000}
Add 0.0616 to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{4}\right)^{2}=\frac{6241}{10000}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{6241}{10000}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{79}{100} x+\frac{3}{4}=-\frac{79}{100}
Simplify.
x=\frac{1}{25} x=-\frac{77}{50}
Subtract \frac{3}{4} from both sides of the equation.