Evaluate
\frac{17}{15}\approx 1.133333333
Factor
\frac{17}{3 \cdot 5} = 1\frac{2}{15} = 1.1333333333333333
Share
Copied to clipboard
\frac{6+2}{3}\times \frac{\frac{2\times 4+1}{4}}{\frac{1\times 8+1}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Multiply 2 and 3 to get 6.
\frac{8}{3}\times \frac{\frac{2\times 4+1}{4}}{\frac{1\times 8+1}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Add 6 and 2 to get 8.
\frac{8}{3}\times \frac{\frac{8+1}{4}}{\frac{1\times 8+1}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Multiply 2 and 4 to get 8.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{1\times 8+1}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Add 8 and 1 to get 9.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{8+1}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Multiply 1 and 8 to get 8.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{9}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Add 8 and 1 to get 9.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{9}{8}+\frac{8+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Multiply 2 and 4 to get 8.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{9}{8}+\frac{9}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Add 8 and 1 to get 9.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{9}{8}+\frac{18}{8}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Least common multiple of 8 and 4 is 8. Convert \frac{9}{8} and \frac{9}{4} to fractions with denominator 8.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{9+18}{8}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Since \frac{9}{8} and \frac{18}{8} have the same denominator, add them by adding their numerators.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{27}{8}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Add 9 and 18 to get 27.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{27}{8}-\frac{2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Multiply 1 and 2 to get 2.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{27}{8}-\frac{3}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Add 2 and 1 to get 3.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{27}{8}-\frac{12}{8}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Least common multiple of 8 and 2 is 8. Convert \frac{27}{8} and \frac{3}{2} to fractions with denominator 8.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{27-12}{8}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Since \frac{27}{8} and \frac{12}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{15}{8}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Subtract 12 from 27 to get 15.
\frac{8}{3}\times \frac{9}{4}\times \frac{8}{15}-\frac{1\times 3+2}{3}-\frac{2}{5}
Divide \frac{9}{4} by \frac{15}{8} by multiplying \frac{9}{4} by the reciprocal of \frac{15}{8}.
\frac{8}{3}\times \frac{9\times 8}{4\times 15}-\frac{1\times 3+2}{3}-\frac{2}{5}
Multiply \frac{9}{4} times \frac{8}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{3}\times \frac{72}{60}-\frac{1\times 3+2}{3}-\frac{2}{5}
Do the multiplications in the fraction \frac{9\times 8}{4\times 15}.
\frac{8}{3}\times \frac{6}{5}-\frac{1\times 3+2}{3}-\frac{2}{5}
Reduce the fraction \frac{72}{60} to lowest terms by extracting and canceling out 12.
\frac{8\times 6}{3\times 5}-\frac{1\times 3+2}{3}-\frac{2}{5}
Multiply \frac{8}{3} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{48}{15}-\frac{1\times 3+2}{3}-\frac{2}{5}
Do the multiplications in the fraction \frac{8\times 6}{3\times 5}.
\frac{16}{5}-\frac{1\times 3+2}{3}-\frac{2}{5}
Reduce the fraction \frac{48}{15} to lowest terms by extracting and canceling out 3.
\frac{16}{5}-\frac{3+2}{3}-\frac{2}{5}
Multiply 1 and 3 to get 3.
\frac{16}{5}-\frac{5}{3}-\frac{2}{5}
Add 3 and 2 to get 5.
\frac{48}{15}-\frac{25}{15}-\frac{2}{5}
Least common multiple of 5 and 3 is 15. Convert \frac{16}{5} and \frac{5}{3} to fractions with denominator 15.
\frac{48-25}{15}-\frac{2}{5}
Since \frac{48}{15} and \frac{25}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{23}{15}-\frac{2}{5}
Subtract 25 from 48 to get 23.
\frac{23}{15}-\frac{6}{15}
Least common multiple of 15 and 5 is 15. Convert \frac{23}{15} and \frac{2}{5} to fractions with denominator 15.
\frac{23-6}{15}
Since \frac{23}{15} and \frac{6}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{17}{15}
Subtract 6 from 23 to get 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}