Evaluate
\frac{4}{5|b|a^{2}}
Differentiate w.r.t. b
-\frac{4|b|}{5a^{2}b^{3}}
Share
Copied to clipboard
\left(\frac{16a^{-4}b^{-2}}{25}\right)^{\frac{1}{2}}
Express \frac{16a^{-4}}{25}b^{-2} as a single fraction.
\frac{\left(16a^{-4}b^{-2}\right)^{\frac{1}{2}}}{25^{\frac{1}{2}}}
To raise \frac{16a^{-4}b^{-2}}{25} to a power, raise both numerator and denominator to the power and then divide.
\frac{16^{\frac{1}{2}}\left(a^{-4}\right)^{\frac{1}{2}}\left(b^{-2}\right)^{\frac{1}{2}}}{25^{\frac{1}{2}}}
Expand \left(16a^{-4}b^{-2}\right)^{\frac{1}{2}}.
\frac{16^{\frac{1}{2}}a^{-2}\left(b^{-2}\right)^{\frac{1}{2}}}{25^{\frac{1}{2}}}
To raise a power to another power, multiply the exponents. Multiply -4 and \frac{1}{2} to get -2.
\frac{16^{\frac{1}{2}}a^{-2}b^{-1}}{25^{\frac{1}{2}}}
To raise a power to another power, multiply the exponents. Multiply -2 and \frac{1}{2} to get -1.
\frac{4a^{-2}b^{-1}}{25^{\frac{1}{2}}}
Calculate 16 to the power of \frac{1}{2} and get 4.
\frac{4a^{-2}b^{-1}}{5}
Calculate 25 to the power of \frac{1}{2} and get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}