Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{5x-b+9}{3x-2}\text{, }&x\neq \frac{2}{3}\\a\in \mathrm{C}\text{, }&x=\frac{2}{3}\text{ and }b=\frac{37}{3}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{5x-b+9}{3x-2}\text{, }&x\neq \frac{2}{3}\\a\in \mathrm{R}\text{, }&x=\frac{2}{3}\text{ and }b=\frac{37}{3}\end{matrix}\right.
Solve for b
b=3ax+5x-2a+9
Graph
Share
Copied to clipboard
12x-6a+6x-3x=3b-3\left(3ax+9\right)
Use the distributive property to multiply -6 by a-x.
18x-6a-3x=3b-3\left(3ax+9\right)
Combine 12x and 6x to get 18x.
15x-6a=3b-3\left(3ax+9\right)
Combine 18x and -3x to get 15x.
15x-6a=3b-9xa-27
Use the distributive property to multiply -3 by 3ax+9.
15x-6a+9xa=3b-27
Add 9xa to both sides.
-6a+9xa=3b-27-15x
Subtract 15x from both sides.
\left(-6+9x\right)a=3b-27-15x
Combine all terms containing a.
\left(9x-6\right)a=-15x+3b-27
The equation is in standard form.
\frac{\left(9x-6\right)a}{9x-6}=\frac{-15x+3b-27}{9x-6}
Divide both sides by 9x-6.
a=\frac{-15x+3b-27}{9x-6}
Dividing by 9x-6 undoes the multiplication by 9x-6.
a=\frac{-5x+b-9}{3x-2}
Divide -27+3b-15x by 9x-6.
12x-6a+6x-3x=3b-3\left(3ax+9\right)
Use the distributive property to multiply -6 by a-x.
18x-6a-3x=3b-3\left(3ax+9\right)
Combine 12x and 6x to get 18x.
15x-6a=3b-3\left(3ax+9\right)
Combine 18x and -3x to get 15x.
15x-6a=3b-9xa-27
Use the distributive property to multiply -3 by 3ax+9.
15x-6a+9xa=3b-27
Add 9xa to both sides.
-6a+9xa=3b-27-15x
Subtract 15x from both sides.
\left(-6+9x\right)a=3b-27-15x
Combine all terms containing a.
\left(9x-6\right)a=-15x+3b-27
The equation is in standard form.
\frac{\left(9x-6\right)a}{9x-6}=\frac{-15x+3b-27}{9x-6}
Divide both sides by 9x-6.
a=\frac{-15x+3b-27}{9x-6}
Dividing by 9x-6 undoes the multiplication by 9x-6.
a=\frac{-5x+b-9}{3x-2}
Divide -27+3b-15x by 9x-6.
12x-6a+6x-3x=3b-3\left(3ax+9\right)
Use the distributive property to multiply -6 by a-x.
18x-6a-3x=3b-3\left(3ax+9\right)
Combine 12x and 6x to get 18x.
15x-6a=3b-3\left(3ax+9\right)
Combine 18x and -3x to get 15x.
15x-6a=3b-9ax-27
Use the distributive property to multiply -3 by 3ax+9.
3b-9ax-27=15x-6a
Swap sides so that all variable terms are on the left hand side.
3b-27=15x-6a+9ax
Add 9ax to both sides.
3b=15x-6a+9ax+27
Add 27 to both sides.
3b=9ax+15x-6a+27
The equation is in standard form.
\frac{3b}{3}=\frac{9ax+15x-6a+27}{3}
Divide both sides by 3.
b=\frac{9ax+15x-6a+27}{3}
Dividing by 3 undoes the multiplication by 3.
b=3ax+5x-2a+9
Divide 15x-6a+9ax+27 by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}