Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(100-\left(10x-400\right)\right)\left(x-40\right)=8000
Use the distributive property to multiply x-40 by 10.
\left(100-10x-\left(-400\right)\right)\left(x-40\right)=8000
To find the opposite of 10x-400, find the opposite of each term.
\left(100-10x+400\right)\left(x-40\right)=8000
The opposite of -400 is 400.
\left(500-10x\right)\left(x-40\right)=8000
Add 100 and 400 to get 500.
500x-20000-10x^{2}+400x=8000
Apply the distributive property by multiplying each term of 500-10x by each term of x-40.
900x-20000-10x^{2}=8000
Combine 500x and 400x to get 900x.
900x-20000-10x^{2}-8000=0
Subtract 8000 from both sides.
900x-28000-10x^{2}=0
Subtract 8000 from -20000 to get -28000.
-10x^{2}+900x-28000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-900±\sqrt{900^{2}-4\left(-10\right)\left(-28000\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 900 for b, and -28000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-900±\sqrt{810000-4\left(-10\right)\left(-28000\right)}}{2\left(-10\right)}
Square 900.
x=\frac{-900±\sqrt{810000+40\left(-28000\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-900±\sqrt{810000-1120000}}{2\left(-10\right)}
Multiply 40 times -28000.
x=\frac{-900±\sqrt{-310000}}{2\left(-10\right)}
Add 810000 to -1120000.
x=\frac{-900±100\sqrt{31}i}{2\left(-10\right)}
Take the square root of -310000.
x=\frac{-900±100\sqrt{31}i}{-20}
Multiply 2 times -10.
x=\frac{-900+100\sqrt{31}i}{-20}
Now solve the equation x=\frac{-900±100\sqrt{31}i}{-20} when ± is plus. Add -900 to 100i\sqrt{31}.
x=-5\sqrt{31}i+45
Divide -900+100i\sqrt{31} by -20.
x=\frac{-100\sqrt{31}i-900}{-20}
Now solve the equation x=\frac{-900±100\sqrt{31}i}{-20} when ± is minus. Subtract 100i\sqrt{31} from -900.
x=45+5\sqrt{31}i
Divide -900-100i\sqrt{31} by -20.
x=-5\sqrt{31}i+45 x=45+5\sqrt{31}i
The equation is now solved.
\left(100-\left(10x-400\right)\right)\left(x-40\right)=8000
Use the distributive property to multiply x-40 by 10.
\left(100-10x-\left(-400\right)\right)\left(x-40\right)=8000
To find the opposite of 10x-400, find the opposite of each term.
\left(100-10x+400\right)\left(x-40\right)=8000
The opposite of -400 is 400.
\left(500-10x\right)\left(x-40\right)=8000
Add 100 and 400 to get 500.
500x-20000-10x^{2}+400x=8000
Apply the distributive property by multiplying each term of 500-10x by each term of x-40.
900x-20000-10x^{2}=8000
Combine 500x and 400x to get 900x.
900x-10x^{2}=8000+20000
Add 20000 to both sides.
900x-10x^{2}=28000
Add 8000 and 20000 to get 28000.
-10x^{2}+900x=28000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+900x}{-10}=\frac{28000}{-10}
Divide both sides by -10.
x^{2}+\frac{900}{-10}x=\frac{28000}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-90x=\frac{28000}{-10}
Divide 900 by -10.
x^{2}-90x=-2800
Divide 28000 by -10.
x^{2}-90x+\left(-45\right)^{2}=-2800+\left(-45\right)^{2}
Divide -90, the coefficient of the x term, by 2 to get -45. Then add the square of -45 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-90x+2025=-2800+2025
Square -45.
x^{2}-90x+2025=-775
Add -2800 to 2025.
\left(x-45\right)^{2}=-775
Factor x^{2}-90x+2025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-45\right)^{2}}=\sqrt{-775}
Take the square root of both sides of the equation.
x-45=5\sqrt{31}i x-45=-5\sqrt{31}i
Simplify.
x=45+5\sqrt{31}i x=-5\sqrt{31}i+45
Add 45 to both sides of the equation.