Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

10-\left(\left(\sqrt{7}\right)^{2}-2\sqrt{7}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{7}-\sqrt{3}\right)^{2}.
10-\left(7-2\sqrt{7}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
The square of \sqrt{7} is 7.
10-\left(7-2\sqrt{21}+\left(\sqrt{3}\right)^{2}\right)
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
10-\left(7-2\sqrt{21}+3\right)
The square of \sqrt{3} is 3.
10-\left(10-2\sqrt{21}\right)
Add 7 and 3 to get 10.
10-10+2\sqrt{21}
To find the opposite of 10-2\sqrt{21}, find the opposite of each term.
2\sqrt{21}
Subtract 10 from 10 to get 0.
10-\left(\left(\sqrt{7}\right)^{2}-2\sqrt{7}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{7}-\sqrt{3}\right)^{2}.
10-\left(7-2\sqrt{7}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
The square of \sqrt{7} is 7.
10-\left(7-2\sqrt{21}+\left(\sqrt{3}\right)^{2}\right)
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
10-\left(7-2\sqrt{21}+3\right)
The square of \sqrt{3} is 3.
10-\left(10-2\sqrt{21}\right)
Add 7 and 3 to get 10.
10-10+2\sqrt{21}
To find the opposite of 10-2\sqrt{21}, find the opposite of each term.
2\sqrt{21}
Subtract 10 from 10 to get 0.