Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(10+\frac{1000}{105}+\frac{10}{1.05^{2}}+\frac{10}{1.05^{3}}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Expand \frac{10}{1.05} by multiplying both numerator and the denominator by 100.
\left(10+\frac{200}{21}+\frac{10}{1.05^{2}}+\frac{10}{1.05^{3}}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Reduce the fraction \frac{1000}{105} to lowest terms by extracting and canceling out 5.
\left(\frac{410}{21}+\frac{10}{1.05^{2}}+\frac{10}{1.05^{3}}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Add 10 and \frac{200}{21} to get \frac{410}{21}.
\left(\frac{410}{21}+\frac{10}{1.1025}+\frac{10}{1.05^{3}}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Calculate 1.05 to the power of 2 and get 1.1025.
\left(\frac{410}{21}+\frac{100000}{11025}+\frac{10}{1.05^{3}}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Expand \frac{10}{1.1025} by multiplying both numerator and the denominator by 10000.
\left(\frac{410}{21}+\frac{4000}{441}+\frac{10}{1.05^{3}}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Reduce the fraction \frac{100000}{11025} to lowest terms by extracting and canceling out 25.
\left(\frac{12610}{441}+\frac{10}{1.05^{3}}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Add \frac{410}{21} and \frac{4000}{441} to get \frac{12610}{441}.
\left(\frac{12610}{441}+\frac{10}{1.157625}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Calculate 1.05 to the power of 3 and get 1.157625.
\left(\frac{12610}{441}+\frac{10000000}{1157625}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Expand \frac{10}{1.157625} by multiplying both numerator and the denominator by 1000000.
\left(\frac{12610}{441}+\frac{80000}{9261}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Reduce the fraction \frac{10000000}{1157625} to lowest terms by extracting and canceling out 125.
\frac{344810}{9261}\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Add \frac{12610}{441} and \frac{80000}{9261} to get \frac{344810}{9261}.
\frac{344810}{9261}\left(1+\frac{12}{20\times 100}\right)^{9}
Express \frac{\frac{12}{20}}{100} as a single fraction.
\frac{344810}{9261}\left(1+\frac{12}{2000}\right)^{9}
Multiply 20 and 100 to get 2000.
\frac{344810}{9261}\left(1+\frac{3}{500}\right)^{9}
Reduce the fraction \frac{12}{2000} to lowest terms by extracting and canceling out 4.
\frac{344810}{9261}\times \left(\frac{503}{500}\right)^{9}
Add 1 and \frac{3}{500} to get \frac{503}{500}.
\frac{344810}{9261}\times \frac{2061160758358799212544183}{1953125000000000000000000}
Calculate \frac{503}{500} to the power of 9 and get \frac{2061160758358799212544183}{1953125000000000000000000}.
\frac{71070884108969755647735974023}{1808789062500000000000000000}
Multiply \frac{344810}{9261} and \frac{2061160758358799212544183}{1953125000000000000000000} to get \frac{71070884108969755647735974023}{1808789062500000000000000000}.