[ 10 + \frac { 10 } { 1.05 } + \frac { 10 } { ( 1.05 ) ^ { 2 } } + \frac { 10 } { ( 1.05 ) ^ { 3 } } ] \times ( 1 + \frac { 12 } { 20 } \% ) ^ { 9 }
Evaluate
\frac{71070884108969755647735974023}{1808789062500000000000000000}\approx 39.291969187
Factor
\frac{41 \cdot 29 ^ {2} \cdot 503 ^ {9}}{2 ^ {17} \cdot 3 ^ {3} \cdot 5 ^ {26} \cdot 7 ^ {3}} = 39\frac{5.281106714697424 \times 10^{26}}{1.8087890625000003 \times 10^{27}} = 39.29196918668881
Share
Copied to clipboard
\left(10+\frac{1000}{105}+\frac{10}{1.05^{2}}+\frac{10}{1.05^{3}}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Expand \frac{10}{1.05} by multiplying both numerator and the denominator by 100.
\left(10+\frac{200}{21}+\frac{10}{1.05^{2}}+\frac{10}{1.05^{3}}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Reduce the fraction \frac{1000}{105} to lowest terms by extracting and canceling out 5.
\left(\frac{410}{21}+\frac{10}{1.05^{2}}+\frac{10}{1.05^{3}}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Add 10 and \frac{200}{21} to get \frac{410}{21}.
\left(\frac{410}{21}+\frac{10}{1.1025}+\frac{10}{1.05^{3}}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Calculate 1.05 to the power of 2 and get 1.1025.
\left(\frac{410}{21}+\frac{100000}{11025}+\frac{10}{1.05^{3}}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Expand \frac{10}{1.1025} by multiplying both numerator and the denominator by 10000.
\left(\frac{410}{21}+\frac{4000}{441}+\frac{10}{1.05^{3}}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Reduce the fraction \frac{100000}{11025} to lowest terms by extracting and canceling out 25.
\left(\frac{12610}{441}+\frac{10}{1.05^{3}}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Add \frac{410}{21} and \frac{4000}{441} to get \frac{12610}{441}.
\left(\frac{12610}{441}+\frac{10}{1.157625}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Calculate 1.05 to the power of 3 and get 1.157625.
\left(\frac{12610}{441}+\frac{10000000}{1157625}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Expand \frac{10}{1.157625} by multiplying both numerator and the denominator by 1000000.
\left(\frac{12610}{441}+\frac{80000}{9261}\right)\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Reduce the fraction \frac{10000000}{1157625} to lowest terms by extracting and canceling out 125.
\frac{344810}{9261}\left(1+\frac{\frac{12}{20}}{100}\right)^{9}
Add \frac{12610}{441} and \frac{80000}{9261} to get \frac{344810}{9261}.
\frac{344810}{9261}\left(1+\frac{12}{20\times 100}\right)^{9}
Express \frac{\frac{12}{20}}{100} as a single fraction.
\frac{344810}{9261}\left(1+\frac{12}{2000}\right)^{9}
Multiply 20 and 100 to get 2000.
\frac{344810}{9261}\left(1+\frac{3}{500}\right)^{9}
Reduce the fraction \frac{12}{2000} to lowest terms by extracting and canceling out 4.
\frac{344810}{9261}\times \left(\frac{503}{500}\right)^{9}
Add 1 and \frac{3}{500} to get \frac{503}{500}.
\frac{344810}{9261}\times \frac{2061160758358799212544183}{1953125000000000000000000}
Calculate \frac{503}{500} to the power of 9 and get \frac{2061160758358799212544183}{1953125000000000000000000}.
\frac{71070884108969755647735974023}{1808789062500000000000000000}
Multiply \frac{344810}{9261} and \frac{2061160758358799212544183}{1953125000000000000000000} to get \frac{71070884108969755647735974023}{1808789062500000000000000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}