Evaluate
\frac{3\left(x-2\right)}{2\left(x+3\right)}
Expand
\frac{3\left(x-2\right)}{2\left(x+3\right)}
Graph
Share
Copied to clipboard
\frac{1.5-\left(\frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1}-\frac{x^{4}+1}{x^{2}+1}\right)\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{4} times \frac{x^{2}+1}{x^{2}+1}.
\frac{1.5-\frac{x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right)}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Since \frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1} and \frac{x^{4}+1}{x^{2}+1} have the same denominator, subtract them by subtracting their numerators.
\frac{1.5-\frac{x^{6}+x^{4}-x^{4}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Do the multiplications in x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right).
\frac{1.5-\frac{x^{6}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Combine like terms in x^{6}+x^{4}-x^{4}-1.
\frac{1.5-\frac{\left(x^{6}-1\right)\left(x^{2}+1\right)\left(x-4\right)}{\left(x^{2}+1\right)\left(x^{7}+6x^{6}-x-6\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Multiply \frac{x^{6}-1}{x^{2}+1} times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6} by multiplying numerator times numerator and denominator times denominator.
\frac{1.5-\frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Cancel out x^{2}+1 in both numerator and denominator.
\frac{1.5-\frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+6\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Factor the expressions that are not already factored in \frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}.
\frac{1.5-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Cancel out \left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) in both numerator and denominator.
\frac{\left(1.5-\frac{x-4}{x+6}\right)\left(3x^{2}+12x-36\right)}{x^{2}+29x+78}
Divide 1.5-\frac{x-4}{x+6} by \frac{x^{2}+29x+78}{3x^{2}+12x-36} by multiplying 1.5-\frac{x-4}{x+6} by the reciprocal of \frac{x^{2}+29x+78}{3x^{2}+12x-36}.
\frac{4.5x^{2}+18x-54-3\times \frac{x-4}{x+6}x^{2}-12\times \frac{x-4}{x+6}x+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Use the distributive property to multiply 1.5-\frac{x-4}{x+6} by 3x^{2}+12x-36.
\frac{4.5x^{2}+18x-54+\frac{-3\left(x-4\right)}{x+6}x^{2}-12\times \frac{x-4}{x+6}x+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Express -3\times \frac{x-4}{x+6} as a single fraction.
\frac{4.5x^{2}+18x-54+\frac{-3\left(x-4\right)x^{2}}{x+6}-12\times \frac{x-4}{x+6}x+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Express \frac{-3\left(x-4\right)}{x+6}x^{2} as a single fraction.
\frac{4.5x^{2}+18x-54+\frac{-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)}{x+6}x+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Express -12\times \frac{x-4}{x+6} as a single fraction.
\frac{4.5x^{2}+18x-54+\frac{-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Express \frac{-12\left(x-4\right)}{x+6}x as a single fraction.
\frac{4.5x^{2}+18x-54+\frac{-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Express 36\times \frac{x-4}{x+6} as a single fraction.
\frac{4.5x^{2}+\frac{\left(18x-54\right)\left(x+6\right)}{x+6}+\frac{-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
To add or subtract expressions, expand them to make their denominators the same. Multiply 18x-54 times \frac{x+6}{x+6}.
\frac{4.5x^{2}+\frac{\left(18x-54\right)\left(x+6\right)-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Since \frac{\left(18x-54\right)\left(x+6\right)}{x+6} and \frac{-3\left(x-4\right)x^{2}}{x+6} have the same denominator, add them by adding their numerators.
\frac{4.5x^{2}+\frac{18x^{2}+108x-54x-324-3x^{3}+12x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Do the multiplications in \left(18x-54\right)\left(x+6\right)-3\left(x-4\right)x^{2}.
\frac{4.5x^{2}+\frac{30x^{2}+54x-324-3x^{3}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Combine like terms in 18x^{2}+108x-54x-324-3x^{3}+12x^{2}.
\frac{4.5x^{2}+\frac{30x^{2}+54x-324-3x^{3}-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Since \frac{30x^{2}+54x-324-3x^{3}}{x+6} and \frac{-12\left(x-4\right)x}{x+6} have the same denominator, add them by adding their numerators.
\frac{4.5x^{2}+\frac{30x^{2}+54x-324-3x^{3}-12x^{2}+48x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Do the multiplications in 30x^{2}+54x-324-3x^{3}-12\left(x-4\right)x.
\frac{4.5x^{2}+\frac{18x^{2}+102x-324-3x^{3}}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Combine like terms in 30x^{2}+54x-324-3x^{3}-12x^{2}+48x.
\frac{4.5x^{2}+\frac{18x^{2}+102x-324-3x^{3}+36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Since \frac{18x^{2}+102x-324-3x^{3}}{x+6} and \frac{36\left(x-4\right)}{x+6} have the same denominator, add them by adding their numerators.
\frac{4.5x^{2}+\frac{18x^{2}+102x-324-3x^{3}+36x-144}{x+6}}{x^{2}+29x+78}
Do the multiplications in 18x^{2}+102x-324-3x^{3}+36\left(x-4\right).
\frac{4.5x^{2}+\frac{18x^{2}+138x-468-3x^{3}}{x+6}}{x^{2}+29x+78}
Combine like terms in 18x^{2}+102x-324-3x^{3}+36x-144.
\frac{4.5x^{2}+\frac{3\left(x+6\right)\left(-x^{2}+12x-26\right)}{x+6}}{x^{2}+29x+78}
Factor the expressions that are not already factored in \frac{18x^{2}+138x-468-3x^{3}}{x+6}.
\frac{4.5x^{2}+3\left(-x^{2}+12x-26\right)}{x^{2}+29x+78}
Cancel out x+6 in both numerator and denominator.
\frac{4.5x^{2}-3x^{2}+36x-78}{x^{2}+29x+78}
Expand the expression.
\frac{1.5x^{2}+36x-78}{x^{2}+29x+78}
Combine 4.5x^{2} and -3x^{2} to get 1.5x^{2}.
\frac{3\left(\frac{1}{2}x-1\right)\left(x+26\right)}{\left(x+3\right)\left(x+26\right)}
Factor the expressions that are not already factored.
\frac{3\left(\frac{1}{2}x-1\right)}{x+3}
Cancel out x+26 in both numerator and denominator.
\frac{\frac{3}{2}x-3}{x+3}
Expand the expression.
\frac{1.5-\left(\frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1}-\frac{x^{4}+1}{x^{2}+1}\right)\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{4} times \frac{x^{2}+1}{x^{2}+1}.
\frac{1.5-\frac{x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right)}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Since \frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1} and \frac{x^{4}+1}{x^{2}+1} have the same denominator, subtract them by subtracting their numerators.
\frac{1.5-\frac{x^{6}+x^{4}-x^{4}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Do the multiplications in x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right).
\frac{1.5-\frac{x^{6}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Combine like terms in x^{6}+x^{4}-x^{4}-1.
\frac{1.5-\frac{\left(x^{6}-1\right)\left(x^{2}+1\right)\left(x-4\right)}{\left(x^{2}+1\right)\left(x^{7}+6x^{6}-x-6\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Multiply \frac{x^{6}-1}{x^{2}+1} times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6} by multiplying numerator times numerator and denominator times denominator.
\frac{1.5-\frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Cancel out x^{2}+1 in both numerator and denominator.
\frac{1.5-\frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+6\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Factor the expressions that are not already factored in \frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}.
\frac{1.5-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Cancel out \left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) in both numerator and denominator.
\frac{\left(1.5-\frac{x-4}{x+6}\right)\left(3x^{2}+12x-36\right)}{x^{2}+29x+78}
Divide 1.5-\frac{x-4}{x+6} by \frac{x^{2}+29x+78}{3x^{2}+12x-36} by multiplying 1.5-\frac{x-4}{x+6} by the reciprocal of \frac{x^{2}+29x+78}{3x^{2}+12x-36}.
\frac{4.5x^{2}+18x-54-3\times \frac{x-4}{x+6}x^{2}-12\times \frac{x-4}{x+6}x+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Use the distributive property to multiply 1.5-\frac{x-4}{x+6} by 3x^{2}+12x-36.
\frac{4.5x^{2}+18x-54+\frac{-3\left(x-4\right)}{x+6}x^{2}-12\times \frac{x-4}{x+6}x+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Express -3\times \frac{x-4}{x+6} as a single fraction.
\frac{4.5x^{2}+18x-54+\frac{-3\left(x-4\right)x^{2}}{x+6}-12\times \frac{x-4}{x+6}x+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Express \frac{-3\left(x-4\right)}{x+6}x^{2} as a single fraction.
\frac{4.5x^{2}+18x-54+\frac{-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)}{x+6}x+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Express -12\times \frac{x-4}{x+6} as a single fraction.
\frac{4.5x^{2}+18x-54+\frac{-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Express \frac{-12\left(x-4\right)}{x+6}x as a single fraction.
\frac{4.5x^{2}+18x-54+\frac{-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Express 36\times \frac{x-4}{x+6} as a single fraction.
\frac{4.5x^{2}+\frac{\left(18x-54\right)\left(x+6\right)}{x+6}+\frac{-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
To add or subtract expressions, expand them to make their denominators the same. Multiply 18x-54 times \frac{x+6}{x+6}.
\frac{4.5x^{2}+\frac{\left(18x-54\right)\left(x+6\right)-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Since \frac{\left(18x-54\right)\left(x+6\right)}{x+6} and \frac{-3\left(x-4\right)x^{2}}{x+6} have the same denominator, add them by adding their numerators.
\frac{4.5x^{2}+\frac{18x^{2}+108x-54x-324-3x^{3}+12x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Do the multiplications in \left(18x-54\right)\left(x+6\right)-3\left(x-4\right)x^{2}.
\frac{4.5x^{2}+\frac{30x^{2}+54x-324-3x^{3}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Combine like terms in 18x^{2}+108x-54x-324-3x^{3}+12x^{2}.
\frac{4.5x^{2}+\frac{30x^{2}+54x-324-3x^{3}-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Since \frac{30x^{2}+54x-324-3x^{3}}{x+6} and \frac{-12\left(x-4\right)x}{x+6} have the same denominator, add them by adding their numerators.
\frac{4.5x^{2}+\frac{30x^{2}+54x-324-3x^{3}-12x^{2}+48x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Do the multiplications in 30x^{2}+54x-324-3x^{3}-12\left(x-4\right)x.
\frac{4.5x^{2}+\frac{18x^{2}+102x-324-3x^{3}}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Combine like terms in 30x^{2}+54x-324-3x^{3}-12x^{2}+48x.
\frac{4.5x^{2}+\frac{18x^{2}+102x-324-3x^{3}+36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Since \frac{18x^{2}+102x-324-3x^{3}}{x+6} and \frac{36\left(x-4\right)}{x+6} have the same denominator, add them by adding their numerators.
\frac{4.5x^{2}+\frac{18x^{2}+102x-324-3x^{3}+36x-144}{x+6}}{x^{2}+29x+78}
Do the multiplications in 18x^{2}+102x-324-3x^{3}+36\left(x-4\right).
\frac{4.5x^{2}+\frac{18x^{2}+138x-468-3x^{3}}{x+6}}{x^{2}+29x+78}
Combine like terms in 18x^{2}+102x-324-3x^{3}+36x-144.
\frac{4.5x^{2}+\frac{3\left(x+6\right)\left(-x^{2}+12x-26\right)}{x+6}}{x^{2}+29x+78}
Factor the expressions that are not already factored in \frac{18x^{2}+138x-468-3x^{3}}{x+6}.
\frac{4.5x^{2}+3\left(-x^{2}+12x-26\right)}{x^{2}+29x+78}
Cancel out x+6 in both numerator and denominator.
\frac{4.5x^{2}-3x^{2}+36x-78}{x^{2}+29x+78}
Expand the expression.
\frac{1.5x^{2}+36x-78}{x^{2}+29x+78}
Combine 4.5x^{2} and -3x^{2} to get 1.5x^{2}.
\frac{3\left(\frac{1}{2}x-1\right)\left(x+26\right)}{\left(x+3\right)\left(x+26\right)}
Factor the expressions that are not already factored.
\frac{3\left(\frac{1}{2}x-1\right)}{x+3}
Cancel out x+26 in both numerator and denominator.
\frac{\frac{3}{2}x-3}{x+3}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}