Evaluate
\frac{1}{m+1}
Expand
\frac{1}{m+1}
Share
Copied to clipboard
\frac{1-\frac{1}{\left(\frac{m}{m}+\frac{1}{m}\right)\left(1-\frac{1}{m}\right)}}{\frac{1}{1-m}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m}{m}.
\frac{1-\frac{1}{\frac{m+1}{m}\left(1-\frac{1}{m}\right)}}{\frac{1}{1-m}}
Since \frac{m}{m} and \frac{1}{m} have the same denominator, add them by adding their numerators.
\frac{1-\frac{1}{\frac{m+1}{m}\left(\frac{m}{m}-\frac{1}{m}\right)}}{\frac{1}{1-m}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m}{m}.
\frac{1-\frac{1}{\frac{m+1}{m}\times \frac{m-1}{m}}}{\frac{1}{1-m}}
Since \frac{m}{m} and \frac{1}{m} have the same denominator, subtract them by subtracting their numerators.
\frac{1-\frac{1}{\frac{\left(m+1\right)\left(m-1\right)}{mm}}}{\frac{1}{1-m}}
Multiply \frac{m+1}{m} times \frac{m-1}{m} by multiplying numerator times numerator and denominator times denominator.
\frac{1-\frac{mm}{\left(m+1\right)\left(m-1\right)}}{\frac{1}{1-m}}
Divide 1 by \frac{\left(m+1\right)\left(m-1\right)}{mm} by multiplying 1 by the reciprocal of \frac{\left(m+1\right)\left(m-1\right)}{mm}.
\frac{1-\frac{m^{2}}{\left(m+1\right)\left(m-1\right)}}{\frac{1}{1-m}}
Multiply m and m to get m^{2}.
\frac{\frac{\left(m+1\right)\left(m-1\right)}{\left(m+1\right)\left(m-1\right)}-\frac{m^{2}}{\left(m+1\right)\left(m-1\right)}}{\frac{1}{1-m}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(m+1\right)\left(m-1\right)}{\left(m+1\right)\left(m-1\right)}.
\frac{\frac{\left(m+1\right)\left(m-1\right)-m^{2}}{\left(m+1\right)\left(m-1\right)}}{\frac{1}{1-m}}
Since \frac{\left(m+1\right)\left(m-1\right)}{\left(m+1\right)\left(m-1\right)} and \frac{m^{2}}{\left(m+1\right)\left(m-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{m^{2}-m+m-1-m^{2}}{\left(m+1\right)\left(m-1\right)}}{\frac{1}{1-m}}
Do the multiplications in \left(m+1\right)\left(m-1\right)-m^{2}.
\frac{\frac{-1}{\left(m+1\right)\left(m-1\right)}}{\frac{1}{1-m}}
Combine like terms in m^{2}-m+m-1-m^{2}.
\frac{-\left(1-m\right)}{\left(m+1\right)\left(m-1\right)}
Divide \frac{-1}{\left(m+1\right)\left(m-1\right)} by \frac{1}{1-m} by multiplying \frac{-1}{\left(m+1\right)\left(m-1\right)} by the reciprocal of \frac{1}{1-m}.
\frac{-\left(-1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}
Extract the negative sign in 1-m.
\frac{-\left(-1\right)}{m+1}
Cancel out m-1 in both numerator and denominator.
\frac{1}{m+1}
Multiply -1 and -1 to get 1.
\frac{1-\frac{1}{\left(\frac{m}{m}+\frac{1}{m}\right)\left(1-\frac{1}{m}\right)}}{\frac{1}{1-m}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m}{m}.
\frac{1-\frac{1}{\frac{m+1}{m}\left(1-\frac{1}{m}\right)}}{\frac{1}{1-m}}
Since \frac{m}{m} and \frac{1}{m} have the same denominator, add them by adding their numerators.
\frac{1-\frac{1}{\frac{m+1}{m}\left(\frac{m}{m}-\frac{1}{m}\right)}}{\frac{1}{1-m}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m}{m}.
\frac{1-\frac{1}{\frac{m+1}{m}\times \frac{m-1}{m}}}{\frac{1}{1-m}}
Since \frac{m}{m} and \frac{1}{m} have the same denominator, subtract them by subtracting their numerators.
\frac{1-\frac{1}{\frac{\left(m+1\right)\left(m-1\right)}{mm}}}{\frac{1}{1-m}}
Multiply \frac{m+1}{m} times \frac{m-1}{m} by multiplying numerator times numerator and denominator times denominator.
\frac{1-\frac{mm}{\left(m+1\right)\left(m-1\right)}}{\frac{1}{1-m}}
Divide 1 by \frac{\left(m+1\right)\left(m-1\right)}{mm} by multiplying 1 by the reciprocal of \frac{\left(m+1\right)\left(m-1\right)}{mm}.
\frac{1-\frac{m^{2}}{\left(m+1\right)\left(m-1\right)}}{\frac{1}{1-m}}
Multiply m and m to get m^{2}.
\frac{\frac{\left(m+1\right)\left(m-1\right)}{\left(m+1\right)\left(m-1\right)}-\frac{m^{2}}{\left(m+1\right)\left(m-1\right)}}{\frac{1}{1-m}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(m+1\right)\left(m-1\right)}{\left(m+1\right)\left(m-1\right)}.
\frac{\frac{\left(m+1\right)\left(m-1\right)-m^{2}}{\left(m+1\right)\left(m-1\right)}}{\frac{1}{1-m}}
Since \frac{\left(m+1\right)\left(m-1\right)}{\left(m+1\right)\left(m-1\right)} and \frac{m^{2}}{\left(m+1\right)\left(m-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{m^{2}-m+m-1-m^{2}}{\left(m+1\right)\left(m-1\right)}}{\frac{1}{1-m}}
Do the multiplications in \left(m+1\right)\left(m-1\right)-m^{2}.
\frac{\frac{-1}{\left(m+1\right)\left(m-1\right)}}{\frac{1}{1-m}}
Combine like terms in m^{2}-m+m-1-m^{2}.
\frac{-\left(1-m\right)}{\left(m+1\right)\left(m-1\right)}
Divide \frac{-1}{\left(m+1\right)\left(m-1\right)} by \frac{1}{1-m} by multiplying \frac{-1}{\left(m+1\right)\left(m-1\right)} by the reciprocal of \frac{1}{1-m}.
\frac{-\left(-1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}
Extract the negative sign in 1-m.
\frac{-\left(-1\right)}{m+1}
Cancel out m-1 in both numerator and denominator.
\frac{1}{m+1}
Multiply -1 and -1 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}