Evaluate
\frac{5131}{4290}\approx 1.196037296
Factor
\frac{7 \cdot 733}{2 \cdot 3 \cdot 5 \cdot 11 \cdot 13} = 1\frac{841}{4290} = 1.196037296037296
Share
Copied to clipboard
\frac{13+7}{13}+\frac{1\times 5+2}{5}-\left(\frac{\frac{1\times 11+5}{11}}{\frac{7\times 2+1}{2}}\times \frac{1\times 4+1}{4}+\frac{1\times 2+1}{2}\right)
Multiply 1 and 13 to get 13.
\frac{20}{13}+\frac{1\times 5+2}{5}-\left(\frac{\frac{1\times 11+5}{11}}{\frac{7\times 2+1}{2}}\times \frac{1\times 4+1}{4}+\frac{1\times 2+1}{2}\right)
Add 13 and 7 to get 20.
\frac{20}{13}+\frac{5+2}{5}-\left(\frac{\frac{1\times 11+5}{11}}{\frac{7\times 2+1}{2}}\times \frac{1\times 4+1}{4}+\frac{1\times 2+1}{2}\right)
Multiply 1 and 5 to get 5.
\frac{20}{13}+\frac{7}{5}-\left(\frac{\frac{1\times 11+5}{11}}{\frac{7\times 2+1}{2}}\times \frac{1\times 4+1}{4}+\frac{1\times 2+1}{2}\right)
Add 5 and 2 to get 7.
\frac{20}{13}+\frac{7}{5}-\left(\frac{\left(1\times 11+5\right)\times 2}{11\left(7\times 2+1\right)}\times \frac{1\times 4+1}{4}+\frac{1\times 2+1}{2}\right)
Divide \frac{1\times 11+5}{11} by \frac{7\times 2+1}{2} by multiplying \frac{1\times 11+5}{11} by the reciprocal of \frac{7\times 2+1}{2}.
\frac{20}{13}+\frac{7}{5}-\left(\frac{\left(11+5\right)\times 2}{11\left(7\times 2+1\right)}\times \frac{1\times 4+1}{4}+\frac{1\times 2+1}{2}\right)
Multiply 1 and 11 to get 11.
\frac{20}{13}+\frac{7}{5}-\left(\frac{16\times 2}{11\left(7\times 2+1\right)}\times \frac{1\times 4+1}{4}+\frac{1\times 2+1}{2}\right)
Add 11 and 5 to get 16.
\frac{20}{13}+\frac{7}{5}-\left(\frac{32}{11\left(7\times 2+1\right)}\times \frac{1\times 4+1}{4}+\frac{1\times 2+1}{2}\right)
Multiply 16 and 2 to get 32.
\frac{20}{13}+\frac{7}{5}-\left(\frac{32}{11\left(14+1\right)}\times \frac{1\times 4+1}{4}+\frac{1\times 2+1}{2}\right)
Multiply 7 and 2 to get 14.
\frac{20}{13}+\frac{7}{5}-\left(\frac{32}{11\times 15}\times \frac{1\times 4+1}{4}+\frac{1\times 2+1}{2}\right)
Add 14 and 1 to get 15.
\frac{20}{13}+\frac{7}{5}-\left(\frac{32}{165}\times \frac{1\times 4+1}{4}+\frac{1\times 2+1}{2}\right)
Multiply 11 and 15 to get 165.
\frac{20}{13}+\frac{7}{5}-\left(\frac{32}{165}\times \frac{4+1}{4}+\frac{1\times 2+1}{2}\right)
Multiply 1 and 4 to get 4.
\frac{20}{13}+\frac{7}{5}-\left(\frac{32}{165}\times \frac{5}{4}+\frac{1\times 2+1}{2}\right)
Add 4 and 1 to get 5.
\frac{20}{13}+\frac{7}{5}-\left(\frac{32\times 5}{165\times 4}+\frac{1\times 2+1}{2}\right)
Multiply \frac{32}{165} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{20}{13}+\frac{7}{5}-\left(\frac{160}{660}+\frac{1\times 2+1}{2}\right)
Do the multiplications in the fraction \frac{32\times 5}{165\times 4}.
\frac{20}{13}+\frac{7}{5}-\left(\frac{8}{33}+\frac{1\times 2+1}{2}\right)
Reduce the fraction \frac{160}{660} to lowest terms by extracting and canceling out 20.
\frac{20}{13}+\frac{7}{5}-\left(\frac{8}{33}+\frac{2+1}{2}\right)
Multiply 1 and 2 to get 2.
\frac{20}{13}+\frac{7}{5}-\left(\frac{8}{33}+\frac{3}{2}\right)
Add 2 and 1 to get 3.
\frac{20}{13}+\frac{7}{5}-\left(\frac{16}{66}+\frac{99}{66}\right)
Least common multiple of 33 and 2 is 66. Convert \frac{8}{33} and \frac{3}{2} to fractions with denominator 66.
\frac{20}{13}+\frac{7}{5}-\frac{16+99}{66}
Since \frac{16}{66} and \frac{99}{66} have the same denominator, add them by adding their numerators.
\frac{20}{13}+\frac{7}{5}-\frac{115}{66}
Add 16 and 99 to get 115.
\frac{20}{13}+\frac{462}{330}-\frac{575}{330}
Least common multiple of 5 and 66 is 330. Convert \frac{7}{5} and \frac{115}{66} to fractions with denominator 330.
\frac{20}{13}+\frac{462-575}{330}
Since \frac{462}{330} and \frac{575}{330} have the same denominator, subtract them by subtracting their numerators.
\frac{20}{13}-\frac{113}{330}
Subtract 575 from 462 to get -113.
\frac{6600}{4290}-\frac{1469}{4290}
Least common multiple of 13 and 330 is 4290. Convert \frac{20}{13} and \frac{113}{330} to fractions with denominator 4290.
\frac{6600-1469}{4290}
Since \frac{6600}{4290} and \frac{1469}{4290} have the same denominator, subtract them by subtracting their numerators.
\frac{5131}{4290}
Subtract 1469 from 6600 to get 5131.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}