Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\left(1+\pi ^{0}-\left(0.2^{3}-\frac{8}{1000}\right)^{2}\right)\times 4^{-2}-27^{\frac{1}{3}}+\frac{2^{-2}}{\sqrt{\left(-\frac{1}{7}\right)^{2}}}
Calculate 1 to the power of -10 and get 1.
\left(1+1-\left(0.2^{3}-\frac{8}{1000}\right)^{2}\right)\times 4^{-2}-27^{\frac{1}{3}}+\frac{2^{-2}}{\sqrt{\left(-\frac{1}{7}\right)^{2}}}
Calculate \pi to the power of 0 and get 1.
\left(2-\left(0.2^{3}-\frac{8}{1000}\right)^{2}\right)\times 4^{-2}-27^{\frac{1}{3}}+\frac{2^{-2}}{\sqrt{\left(-\frac{1}{7}\right)^{2}}}
Add 1 and 1 to get 2.
\left(2-\left(0.008-\frac{8}{1000}\right)^{2}\right)\times 4^{-2}-27^{\frac{1}{3}}+\frac{2^{-2}}{\sqrt{\left(-\frac{1}{7}\right)^{2}}}
Calculate 0.2 to the power of 3 and get 0.008.
\left(2-\left(0.008-\frac{1}{125}\right)^{2}\right)\times 4^{-2}-27^{\frac{1}{3}}+\frac{2^{-2}}{\sqrt{\left(-\frac{1}{7}\right)^{2}}}
Reduce the fraction \frac{8}{1000} to lowest terms by extracting and canceling out 8.
\left(2-0^{2}\right)\times 4^{-2}-27^{\frac{1}{3}}+\frac{2^{-2}}{\sqrt{\left(-\frac{1}{7}\right)^{2}}}
Subtract \frac{1}{125} from 0.008 to get 0.
\left(2-0\right)\times 4^{-2}-27^{\frac{1}{3}}+\frac{2^{-2}}{\sqrt{\left(-\frac{1}{7}\right)^{2}}}
Calculate 0 to the power of 2 and get 0.
2\times 4^{-2}-27^{\frac{1}{3}}+\frac{2^{-2}}{\sqrt{\left(-\frac{1}{7}\right)^{2}}}
Subtract 0 from 2 to get 2.
2\times \frac{1}{16}-27^{\frac{1}{3}}+\frac{2^{-2}}{\sqrt{\left(-\frac{1}{7}\right)^{2}}}
Calculate 4 to the power of -2 and get \frac{1}{16}.
\frac{1}{8}-27^{\frac{1}{3}}+\frac{2^{-2}}{\sqrt{\left(-\frac{1}{7}\right)^{2}}}
Multiply 2 and \frac{1}{16} to get \frac{1}{8}.
\frac{1}{8}-3+\frac{2^{-2}}{\sqrt{\left(-\frac{1}{7}\right)^{2}}}
Calculate 27 to the power of \frac{1}{3} and get 3.
-\frac{23}{8}+\frac{2^{-2}}{\sqrt{\left(-\frac{1}{7}\right)^{2}}}
Subtract 3 from \frac{1}{8} to get -\frac{23}{8}.
-\frac{23}{8}+\frac{\frac{1}{4}}{\sqrt{\left(-\frac{1}{7}\right)^{2}}}
Calculate 2 to the power of -2 and get \frac{1}{4}.
-\frac{23}{8}+\frac{\frac{1}{4}}{\sqrt{\frac{1}{49}}}
Calculate -\frac{1}{7} to the power of 2 and get \frac{1}{49}.
-\frac{23}{8}+\frac{\frac{1}{4}}{\frac{1}{7}}
Rewrite the square root of the division \frac{1}{49} as the division of square roots \frac{\sqrt{1}}{\sqrt{49}}. Take the square root of both numerator and denominator.
-\frac{23}{8}+\frac{1}{4}\times 7
Divide \frac{1}{4} by \frac{1}{7} by multiplying \frac{1}{4} by the reciprocal of \frac{1}{7}.
-\frac{23}{8}+\frac{7}{4}
Multiply \frac{1}{4} and 7 to get \frac{7}{4}.
-\frac{9}{8}
Add -\frac{23}{8} and \frac{7}{4} to get -\frac{9}{8}.