Evaluate
\frac{7}{4}=1.75
Factor
\frac{7}{2 ^ {2}} = 1\frac{3}{4} = 1.75
Share
Copied to clipboard
\left(1+\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\frac{1}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(1+\frac{\sqrt{2}}{2}+\frac{1}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
The square of \sqrt{2} is 2.
\left(\frac{2}{2}+\frac{\sqrt{2}}{2}+\frac{1}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
Convert 1 to fraction \frac{2}{2}.
\left(\frac{2+1}{2}+\frac{\sqrt{2}}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\left(\frac{3}{2}+\frac{\sqrt{2}}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
Add 2 and 1 to get 3.
\frac{3+\sqrt{2}}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
Since \frac{3}{2} and \frac{\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\frac{3+\sqrt{2}}{2}\left(1-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\frac{1}{2}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3+\sqrt{2}}{2}\left(1-\frac{\sqrt{2}}{2}+\frac{1}{2}\right)
The square of \sqrt{2} is 2.
\frac{3+\sqrt{2}}{2}\left(\frac{2}{2}-\frac{\sqrt{2}}{2}+\frac{1}{2}\right)
Convert 1 to fraction \frac{2}{2}.
\frac{3+\sqrt{2}}{2}\left(\frac{2+1}{2}-\frac{\sqrt{2}}{2}\right)
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{3+\sqrt{2}}{2}\left(\frac{3}{2}-\frac{\sqrt{2}}{2}\right)
Add 2 and 1 to get 3.
\frac{3+\sqrt{2}}{2}\times \frac{3+\sqrt{2}}{2}
Since \frac{3}{2} and \frac{\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\left(\frac{3+\sqrt{2}}{2}\right)^{2}
Multiply \frac{3+\sqrt{2}}{2} and \frac{3+\sqrt{2}}{2} to get \left(\frac{3+\sqrt{2}}{2}\right)^{2}.
\frac{\left(3+\sqrt{2}\right)^{2}}{2^{2}}
To raise \frac{3+\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{9+6\sqrt{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{2}\right)^{2}.
\frac{9+6\sqrt{2}+2}{2^{2}}
The square of \sqrt{2} is 2.
\frac{11+6\sqrt{2}}{2^{2}}
Add 9 and 2 to get 11.
\frac{11+6\sqrt{2}}{4}
Calculate 2 to the power of 2 and get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}