[ 0,6 \cdot ( 2 - \frac { 4 } { 5 } ) - ( 1 - \frac { 2 } { 5 } - 0,25 ) \cdot - 4 ] : 1,8 =
Evaluate
\frac{53}{45}\approx 1,177777778
Factor
\frac{53}{5 \cdot 3 ^ {2}} = 1\frac{8}{45} = 1.1777777777777778
Share
Copied to clipboard
\frac{0,6\left(\frac{10}{5}-\frac{4}{5}\right)-\left(1-\frac{2}{5}-0,25\right)\left(-4\right)}{1,8}
Convert 2 to fraction \frac{10}{5}.
\frac{0,6\times \frac{10-4}{5}-\left(1-\frac{2}{5}-0,25\right)\left(-4\right)}{1,8}
Since \frac{10}{5} and \frac{4}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{0,6\times \frac{6}{5}-\left(1-\frac{2}{5}-0,25\right)\left(-4\right)}{1,8}
Subtract 4 from 10 to get 6.
\frac{\frac{3}{5}\times \frac{6}{5}-\left(1-\frac{2}{5}-0,25\right)\left(-4\right)}{1,8}
Convert decimal number 0,6 to fraction \frac{6}{10}. Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{3\times 6}{5\times 5}-\left(1-\frac{2}{5}-0,25\right)\left(-4\right)}{1,8}
Multiply \frac{3}{5} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{18}{25}-\left(1-\frac{2}{5}-0,25\right)\left(-4\right)}{1,8}
Do the multiplications in the fraction \frac{3\times 6}{5\times 5}.
\frac{\frac{18}{25}-\left(\frac{5}{5}-\frac{2}{5}-0,25\right)\left(-4\right)}{1,8}
Convert 1 to fraction \frac{5}{5}.
\frac{\frac{18}{25}-\left(\frac{5-2}{5}-0,25\right)\left(-4\right)}{1,8}
Since \frac{5}{5} and \frac{2}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{18}{25}-\left(\frac{3}{5}-0,25\right)\left(-4\right)}{1,8}
Subtract 2 from 5 to get 3.
\frac{\frac{18}{25}-\left(\frac{3}{5}-\frac{1}{4}\right)\left(-4\right)}{1,8}
Convert decimal number 0,25 to fraction \frac{25}{100}. Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{\frac{18}{25}-\left(\frac{12}{20}-\frac{5}{20}\right)\left(-4\right)}{1,8}
Least common multiple of 5 and 4 is 20. Convert \frac{3}{5} and \frac{1}{4} to fractions with denominator 20.
\frac{\frac{18}{25}-\frac{12-5}{20}\left(-4\right)}{1,8}
Since \frac{12}{20} and \frac{5}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{18}{25}-\frac{7}{20}\left(-4\right)}{1,8}
Subtract 5 from 12 to get 7.
\frac{\frac{18}{25}-\frac{7\left(-4\right)}{20}}{1,8}
Express \frac{7}{20}\left(-4\right) as a single fraction.
\frac{\frac{18}{25}-\frac{-28}{20}}{1,8}
Multiply 7 and -4 to get -28.
\frac{\frac{18}{25}-\left(-\frac{7}{5}\right)}{1,8}
Reduce the fraction \frac{-28}{20} to lowest terms by extracting and canceling out 4.
\frac{\frac{18}{25}+\frac{7}{5}}{1,8}
The opposite of -\frac{7}{5} is \frac{7}{5}.
\frac{\frac{18}{25}+\frac{35}{25}}{1,8}
Least common multiple of 25 and 5 is 25. Convert \frac{18}{25} and \frac{7}{5} to fractions with denominator 25.
\frac{\frac{18+35}{25}}{1,8}
Since \frac{18}{25} and \frac{35}{25} have the same denominator, add them by adding their numerators.
\frac{\frac{53}{25}}{1,8}
Add 18 and 35 to get 53.
\frac{53}{25\times 1,8}
Express \frac{\frac{53}{25}}{1,8} as a single fraction.
\frac{53}{45}
Multiply 25 and 1,8 to get 45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}