Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

\left(-16k^{2}+8k\right)^{2}-4\left(3+4k^{2}\right)\left(16k^{2}-16k-8\right)>0
Use the distributive property to multiply -8k by 2k-1.
256\left(k^{2}\right)^{2}-256k^{2}k+64k^{2}-4\left(3+4k^{2}\right)\left(16k^{2}-16k-8\right)>0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-16k^{2}+8k\right)^{2}.
256k^{4}-256k^{2}k+64k^{2}-4\left(3+4k^{2}\right)\left(16k^{2}-16k-8\right)>0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
256k^{4}-256k^{3}+64k^{2}-4\left(3+4k^{2}\right)\left(16k^{2}-16k-8\right)>0
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
256k^{4}-256k^{3}+64k^{2}+\left(-12-16k^{2}\right)\left(16k^{2}-16k-8\right)>0
Use the distributive property to multiply -4 by 3+4k^{2}.
256k^{4}-256k^{3}+64k^{2}-64k^{2}+192k+96-256k^{4}+256k^{3}>0
Use the distributive property to multiply -12-16k^{2} by 16k^{2}-16k-8 and combine like terms.
256k^{4}-256k^{3}+192k+96-256k^{4}+256k^{3}>0
Combine 64k^{2} and -64k^{2} to get 0.
-256k^{3}+192k+96+256k^{3}>0
Combine 256k^{4} and -256k^{4} to get 0.
192k+96>0
Combine -256k^{3} and 256k^{3} to get 0.
192k>-96
Subtract 96 from both sides. Anything subtracted from zero gives its negation.
k>\frac{-96}{192}
Divide both sides by 192. Since 192 is positive, the inequality direction remains the same.
k>-\frac{1}{2}
Reduce the fraction \frac{-96}{192} to lowest terms by extracting and canceling out 96.