Solve for k
k>-\frac{1}{2}
Share
Copied to clipboard
\left(-16k^{2}+8k\right)^{2}-4\left(3+4k^{2}\right)\left(16k^{2}-16k-8\right)>0
Use the distributive property to multiply -8k by 2k-1.
256\left(k^{2}\right)^{2}-256k^{2}k+64k^{2}-4\left(3+4k^{2}\right)\left(16k^{2}-16k-8\right)>0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-16k^{2}+8k\right)^{2}.
256k^{4}-256k^{2}k+64k^{2}-4\left(3+4k^{2}\right)\left(16k^{2}-16k-8\right)>0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
256k^{4}-256k^{3}+64k^{2}-4\left(3+4k^{2}\right)\left(16k^{2}-16k-8\right)>0
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
256k^{4}-256k^{3}+64k^{2}+\left(-12-16k^{2}\right)\left(16k^{2}-16k-8\right)>0
Use the distributive property to multiply -4 by 3+4k^{2}.
256k^{4}-256k^{3}+64k^{2}-64k^{2}+192k+96-256k^{4}+256k^{3}>0
Use the distributive property to multiply -12-16k^{2} by 16k^{2}-16k-8 and combine like terms.
256k^{4}-256k^{3}+192k+96-256k^{4}+256k^{3}>0
Combine 64k^{2} and -64k^{2} to get 0.
-256k^{3}+192k+96+256k^{3}>0
Combine 256k^{4} and -256k^{4} to get 0.
192k+96>0
Combine -256k^{3} and 256k^{3} to get 0.
192k>-96
Subtract 96 from both sides. Anything subtracted from zero gives its negation.
k>\frac{-96}{192}
Divide both sides by 192. Since 192 is positive, the inequality direction remains the same.
k>-\frac{1}{2}
Reduce the fraction \frac{-96}{192} to lowest terms by extracting and canceling out 96.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}