Evaluate
3\left(3a^{2}-588a-784\right)a^{13}
Expand
9a^{15}-1764a^{14}-2352a^{13}
Share
Copied to clipboard
-3a^{11}\left(-a^{2}\right)^{2}\left(-3\right)+21a^{6}\left(-7\right)a^{5}\left(12a^{3}+16a^{2}\right)
To multiply powers of the same base, add their exponents. Add 4 and 7 to get 11.
-3a^{11}\left(-a^{2}\right)^{2}\left(-3\right)+21a^{11}\left(-7\right)\left(12a^{3}+16a^{2}\right)
To multiply powers of the same base, add their exponents. Add 6 and 5 to get 11.
-3a^{11}\left(a^{2}\right)^{2}\left(-3\right)+21a^{11}\left(-7\right)\left(12a^{3}+16a^{2}\right)
Calculate -a^{2} to the power of 2 and get \left(a^{2}\right)^{2}.
9a^{11}\left(a^{2}\right)^{2}+21a^{11}\left(-7\right)\left(12a^{3}+16a^{2}\right)
Multiply -3 and -3 to get 9.
9a^{11}\left(a^{2}\right)^{2}-147a^{11}\left(12a^{3}+16a^{2}\right)
Multiply 21 and -7 to get -147.
9a^{11}\left(a^{2}\right)^{2}-1764a^{14}-2352a^{13}
Use the distributive property to multiply -147a^{11} by 12a^{3}+16a^{2}.
9a^{11}a^{4}-1764a^{14}-2352a^{13}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
9a^{15}-1764a^{14}-2352a^{13}
To multiply powers of the same base, add their exponents. Add 11 and 4 to get 15.
-3a^{11}\left(-a^{2}\right)^{2}\left(-3\right)+21a^{6}\left(-7\right)a^{5}\left(12a^{3}+16a^{2}\right)
To multiply powers of the same base, add their exponents. Add 4 and 7 to get 11.
-3a^{11}\left(-a^{2}\right)^{2}\left(-3\right)+21a^{11}\left(-7\right)\left(12a^{3}+16a^{2}\right)
To multiply powers of the same base, add their exponents. Add 6 and 5 to get 11.
-3a^{11}\left(a^{2}\right)^{2}\left(-3\right)+21a^{11}\left(-7\right)\left(12a^{3}+16a^{2}\right)
Calculate -a^{2} to the power of 2 and get \left(a^{2}\right)^{2}.
9a^{11}\left(a^{2}\right)^{2}+21a^{11}\left(-7\right)\left(12a^{3}+16a^{2}\right)
Multiply -3 and -3 to get 9.
9a^{11}\left(a^{2}\right)^{2}-147a^{11}\left(12a^{3}+16a^{2}\right)
Multiply 21 and -7 to get -147.
9a^{11}\left(a^{2}\right)^{2}-1764a^{14}-2352a^{13}
Use the distributive property to multiply -147a^{11} by 12a^{3}+16a^{2}.
9a^{11}a^{4}-1764a^{14}-2352a^{13}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
9a^{15}-1764a^{14}-2352a^{13}
To multiply powers of the same base, add their exponents. Add 11 and 4 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}