Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(-331776-\left(-2\right)^{3}+\left(-24\right)^{4}\right)\left(-\frac{2}{3}+\frac{1\times 8+7}{8}\left(-\frac{1}{4}\right)\times 4.5-6^{2}\right)+32
Calculate 24 to the power of 4 and get 331776.
\left(-331776-\left(-8\right)+\left(-24\right)^{4}\right)\left(-\frac{2}{3}+\frac{1\times 8+7}{8}\left(-\frac{1}{4}\right)\times 4.5-6^{2}\right)+32
Calculate -2 to the power of 3 and get -8.
\left(-331776+8+\left(-24\right)^{4}\right)\left(-\frac{2}{3}+\frac{1\times 8+7}{8}\left(-\frac{1}{4}\right)\times 4.5-6^{2}\right)+32
The opposite of -8 is 8.
\left(-331768+\left(-24\right)^{4}\right)\left(-\frac{2}{3}+\frac{1\times 8+7}{8}\left(-\frac{1}{4}\right)\times 4.5-6^{2}\right)+32
Add -331776 and 8 to get -331768.
\left(-331768+331776\right)\left(-\frac{2}{3}+\frac{1\times 8+7}{8}\left(-\frac{1}{4}\right)\times 4.5-6^{2}\right)+32
Calculate -24 to the power of 4 and get 331776.
8\left(-\frac{2}{3}+\frac{1\times 8+7}{8}\left(-\frac{1}{4}\right)\times 4.5-6^{2}\right)+32
Add -331768 and 331776 to get 8.
8\left(-\frac{2}{3}+\frac{8+7}{8}\left(-\frac{1}{4}\right)\times 4.5-6^{2}\right)+32
Multiply 1 and 8 to get 8.
8\left(-\frac{2}{3}+\frac{15}{8}\left(-\frac{1}{4}\right)\times 4.5-6^{2}\right)+32
Add 8 and 7 to get 15.
8\left(-\frac{2}{3}+\frac{15\left(-1\right)}{8\times 4}\times 4.5-6^{2}\right)+32
Multiply \frac{15}{8} times -\frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
8\left(-\frac{2}{3}+\frac{-15}{32}\times 4.5-6^{2}\right)+32
Do the multiplications in the fraction \frac{15\left(-1\right)}{8\times 4}.
8\left(-\frac{2}{3}-\frac{15}{32}\times 4.5-6^{2}\right)+32
Fraction \frac{-15}{32} can be rewritten as -\frac{15}{32} by extracting the negative sign.
8\left(-\frac{2}{3}-\frac{15}{32}\times \frac{9}{2}-6^{2}\right)+32
Convert decimal number 4.5 to fraction \frac{45}{10}. Reduce the fraction \frac{45}{10} to lowest terms by extracting and canceling out 5.
8\left(-\frac{2}{3}+\frac{-15\times 9}{32\times 2}-6^{2}\right)+32
Multiply -\frac{15}{32} times \frac{9}{2} by multiplying numerator times numerator and denominator times denominator.
8\left(-\frac{2}{3}+\frac{-135}{64}-6^{2}\right)+32
Do the multiplications in the fraction \frac{-15\times 9}{32\times 2}.
8\left(-\frac{2}{3}-\frac{135}{64}-6^{2}\right)+32
Fraction \frac{-135}{64} can be rewritten as -\frac{135}{64} by extracting the negative sign.
8\left(-\frac{128}{192}-\frac{405}{192}-6^{2}\right)+32
Least common multiple of 3 and 64 is 192. Convert -\frac{2}{3} and \frac{135}{64} to fractions with denominator 192.
8\left(\frac{-128-405}{192}-6^{2}\right)+32
Since -\frac{128}{192} and \frac{405}{192} have the same denominator, subtract them by subtracting their numerators.
8\left(-\frac{533}{192}-6^{2}\right)+32
Subtract 405 from -128 to get -533.
8\left(-\frac{533}{192}-36\right)+32
Calculate 6 to the power of 2 and get 36.
8\left(-\frac{533}{192}-\frac{6912}{192}\right)+32
Convert 36 to fraction \frac{6912}{192}.
8\times \frac{-533-6912}{192}+32
Since -\frac{533}{192} and \frac{6912}{192} have the same denominator, subtract them by subtracting their numerators.
8\left(-\frac{7445}{192}\right)+32
Subtract 6912 from -533 to get -7445.
\frac{8\left(-7445\right)}{192}+32
Express 8\left(-\frac{7445}{192}\right) as a single fraction.
\frac{-59560}{192}+32
Multiply 8 and -7445 to get -59560.
-\frac{7445}{24}+32
Reduce the fraction \frac{-59560}{192} to lowest terms by extracting and canceling out 8.
-\frac{7445}{24}+\frac{768}{24}
Convert 32 to fraction \frac{768}{24}.
\frac{-7445+768}{24}
Since -\frac{7445}{24} and \frac{768}{24} have the same denominator, add them by adding their numerators.
-\frac{6677}{24}
Add -7445 and 768 to get -6677.