Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-2x+4\right)\left(x+2\right)+3\left(x-2\right)^{2}-\left(x+2\right)^{2}-8\left(3x+2\right)
Use the distributive property to multiply -2 by x-2.
-2x^{2}+8+3\left(x-2\right)^{2}-\left(x+2\right)^{2}-8\left(3x+2\right)
Use the distributive property to multiply -2x+4 by x+2 and combine like terms.
-2x^{2}+8+3\left(x^{2}-4x+4\right)-\left(x+2\right)^{2}-8\left(3x+2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
-2x^{2}+8+3x^{2}-12x+12-\left(x+2\right)^{2}-8\left(3x+2\right)
Use the distributive property to multiply 3 by x^{2}-4x+4.
x^{2}+8-12x+12-\left(x+2\right)^{2}-8\left(3x+2\right)
Combine -2x^{2} and 3x^{2} to get x^{2}.
x^{2}+20-12x-\left(x+2\right)^{2}-8\left(3x+2\right)
Add 8 and 12 to get 20.
x^{2}+20-12x-\left(x^{2}+4x+4\right)-8\left(3x+2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+20-12x-x^{2}-4x-4-8\left(3x+2\right)
To find the opposite of x^{2}+4x+4, find the opposite of each term.
20-12x-4x-4-8\left(3x+2\right)
Combine x^{2} and -x^{2} to get 0.
20-16x-4-8\left(3x+2\right)
Combine -12x and -4x to get -16x.
16-16x-8\left(3x+2\right)
Subtract 4 from 20 to get 16.
16-16x-24x-16
Use the distributive property to multiply -8 by 3x+2.
16-40x-16
Combine -16x and -24x to get -40x.
-40x
Subtract 16 from 16 to get 0.
\left(-2x+4\right)\left(x+2\right)+3\left(x-2\right)^{2}-\left(x+2\right)^{2}-8\left(3x+2\right)
Use the distributive property to multiply -2 by x-2.
-2x^{2}+8+3\left(x-2\right)^{2}-\left(x+2\right)^{2}-8\left(3x+2\right)
Use the distributive property to multiply -2x+4 by x+2 and combine like terms.
-2x^{2}+8+3\left(x^{2}-4x+4\right)-\left(x+2\right)^{2}-8\left(3x+2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
-2x^{2}+8+3x^{2}-12x+12-\left(x+2\right)^{2}-8\left(3x+2\right)
Use the distributive property to multiply 3 by x^{2}-4x+4.
x^{2}+8-12x+12-\left(x+2\right)^{2}-8\left(3x+2\right)
Combine -2x^{2} and 3x^{2} to get x^{2}.
x^{2}+20-12x-\left(x+2\right)^{2}-8\left(3x+2\right)
Add 8 and 12 to get 20.
x^{2}+20-12x-\left(x^{2}+4x+4\right)-8\left(3x+2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+20-12x-x^{2}-4x-4-8\left(3x+2\right)
To find the opposite of x^{2}+4x+4, find the opposite of each term.
20-12x-4x-4-8\left(3x+2\right)
Combine x^{2} and -x^{2} to get 0.
20-16x-4-8\left(3x+2\right)
Combine -12x and -4x to get -16x.
16-16x-8\left(3x+2\right)
Subtract 4 from 20 to get 16.
16-16x-24x-16
Use the distributive property to multiply -8 by 3x+2.
16-40x-16
Combine -16x and -24x to get -40x.
-40x
Subtract 16 from 16 to get 0.