Solve for a
a<3
Share
Copied to clipboard
\left(-2a+2\right)^{2}-4\left(a^{2}-a-2\right)>0
Use the distributive property to multiply -2 by a-1.
4a^{2}-8a+4-4\left(a^{2}-a-2\right)>0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-2a+2\right)^{2}.
4a^{2}-8a+4-4a^{2}+4a+8>0
Use the distributive property to multiply -4 by a^{2}-a-2.
-8a+4+4a+8>0
Combine 4a^{2} and -4a^{2} to get 0.
-4a+4+8>0
Combine -8a and 4a to get -4a.
-4a+12>0
Add 4 and 8 to get 12.
-4a>-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
a<\frac{-12}{-4}
Divide both sides by -4. Since -4 is negative, the inequality direction is changed.
a<3
Divide -12 by -4 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}