Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{-2\times \frac{3}{4}}{-6\times \frac{1}{2}}
Divide \frac{-2}{-6} by \frac{\frac{1}{2}}{\frac{3}{4}} by multiplying \frac{-2}{-6} by the reciprocal of \frac{\frac{1}{2}}{\frac{3}{4}}.
\frac{-\frac{3}{4}}{-3\times \frac{1}{2}}
Cancel out 2 in both numerator and denominator.
\frac{-\frac{3}{4}}{\frac{-3}{2}}
Multiply -3 and \frac{1}{2} to get \frac{-3}{2}.
\frac{-\frac{3}{4}}{-\frac{3}{2}}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
-\frac{3}{4}\left(-\frac{2}{3}\right)
Divide -\frac{3}{4} by -\frac{3}{2} by multiplying -\frac{3}{4} by the reciprocal of -\frac{3}{2}.
\frac{-3\left(-2\right)}{4\times 3}
Multiply -\frac{3}{4} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{12}
Do the multiplications in the fraction \frac{-3\left(-2\right)}{4\times 3}.
\frac{1}{2}
Reduce the fraction \frac{6}{12} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}